On congruence schemes for constant terms and their applications

Rowland and Zeilberger devised an approach to algorithmically determine the modulo p r reductions of values of combinatorial sequences representable as constant terms (building on work of Rowland and Yassawi). The resulting p -schemes are systems of recurrences and, depending on their shape, are cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in number theory 2022-09, Vol.8 (3), Article 42
1. Verfasser: Straub, Armin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Research in number theory
container_volume 8
creator Straub, Armin
description Rowland and Zeilberger devised an approach to algorithmically determine the modulo p r reductions of values of combinatorial sequences representable as constant terms (building on work of Rowland and Yassawi). The resulting p -schemes are systems of recurrences and, depending on their shape, are classified as automatic or linear. We revisit this approach, provide some additional details such as bounding the number of states, and suggest a third natural type of scheme that combines benefits of automatic and linear ones. We illustrate the utility of these “scaling” schemes by confirming and extending a conjecture of Rowland and Yassawi on Motzkin numbers.
doi_str_mv 10.1007/s40993-022-00337-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2683152317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2683152317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-937d317a9a8260ffb37361fdbad2e70342bd3000a654bfac70873143ec77a3f03</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJg0f4BTwHP0Ze83aR7Eil-QaEXPYdsNmm3tNk1SQ_-e1NX8ObpDe_NzBuGkBsOdxxA3acKmgYZCMEAEBWTZ2QmUCJr6ro-L7g-nbiESzJPaQdQMFZCiBl5WAdqh7CJRxeso8lu3cEl6od4WqdsQqbZxUOiJnQ0b10fqRnHfW9N7gvhmlx4s09u_juvyMfz0_vyla3WL2_LxxWzomoya1B1yJVpzEJI8L5FhZL7rjWdcApKmLbDksvIumq9sQoWCnmFzipl0ANekdvJd4zD59GlrHfDMYbyUgu5QF6LYl9YYmLZOKQUnddj7A8mfmkO-tSVnrrSpSv905WWRYSTKBVy2Lj4Z_2P6hs1xWsq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683152317</pqid></control><display><type>article</type><title>On congruence schemes for constant terms and their applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Straub, Armin</creator><creatorcontrib>Straub, Armin</creatorcontrib><description>Rowland and Zeilberger devised an approach to algorithmically determine the modulo p r reductions of values of combinatorial sequences representable as constant terms (building on work of Rowland and Yassawi). The resulting p -schemes are systems of recurrences and, depending on their shape, are classified as automatic or linear. We revisit this approach, provide some additional details such as bounding the number of states, and suggest a third natural type of scheme that combines benefits of automatic and linear ones. We illustrate the utility of these “scaling” schemes by confirming and extending a conjecture of Rowland and Yassawi on Motzkin numbers.</description><identifier>ISSN: 2522-0160</identifier><identifier>EISSN: 2363-9555</identifier><identifier>DOI: 10.1007/s40993-022-00337-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Combinatorial analysis ; Mathematics ; Mathematics and Statistics ; Number Theory</subject><ispartof>Research in number theory, 2022-09, Vol.8 (3), Article 42</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-937d317a9a8260ffb37361fdbad2e70342bd3000a654bfac70873143ec77a3f03</citedby><cites>FETCH-LOGICAL-c249t-937d317a9a8260ffb37361fdbad2e70342bd3000a654bfac70873143ec77a3f03</cites><orcidid>0000-0001-6802-6053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40993-022-00337-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40993-022-00337-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Straub, Armin</creatorcontrib><title>On congruence schemes for constant terms and their applications</title><title>Research in number theory</title><addtitle>Res. number theory</addtitle><description>Rowland and Zeilberger devised an approach to algorithmically determine the modulo p r reductions of values of combinatorial sequences representable as constant terms (building on work of Rowland and Yassawi). The resulting p -schemes are systems of recurrences and, depending on their shape, are classified as automatic or linear. We revisit this approach, provide some additional details such as bounding the number of states, and suggest a third natural type of scheme that combines benefits of automatic and linear ones. We illustrate the utility of these “scaling” schemes by confirming and extending a conjecture of Rowland and Yassawi on Motzkin numbers.</description><subject>Combinatorial analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>2522-0160</issn><issn>2363-9555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJg0f4BTwHP0Ze83aR7Eil-QaEXPYdsNmm3tNk1SQ_-e1NX8ObpDe_NzBuGkBsOdxxA3acKmgYZCMEAEBWTZ2QmUCJr6ro-L7g-nbiESzJPaQdQMFZCiBl5WAdqh7CJRxeso8lu3cEl6od4WqdsQqbZxUOiJnQ0b10fqRnHfW9N7gvhmlx4s09u_juvyMfz0_vyla3WL2_LxxWzomoya1B1yJVpzEJI8L5FhZL7rjWdcApKmLbDksvIumq9sQoWCnmFzipl0ANekdvJd4zD59GlrHfDMYbyUgu5QF6LYl9YYmLZOKQUnddj7A8mfmkO-tSVnrrSpSv905WWRYSTKBVy2Lj4Z_2P6hs1xWsq</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Straub, Armin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6802-6053</orcidid></search><sort><creationdate>20220901</creationdate><title>On congruence schemes for constant terms and their applications</title><author>Straub, Armin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-937d317a9a8260ffb37361fdbad2e70342bd3000a654bfac70873143ec77a3f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorial analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Straub, Armin</creatorcontrib><collection>CrossRef</collection><jtitle>Research in number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Straub, Armin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On congruence schemes for constant terms and their applications</atitle><jtitle>Research in number theory</jtitle><stitle>Res. number theory</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>8</volume><issue>3</issue><artnum>42</artnum><issn>2522-0160</issn><eissn>2363-9555</eissn><abstract>Rowland and Zeilberger devised an approach to algorithmically determine the modulo p r reductions of values of combinatorial sequences representable as constant terms (building on work of Rowland and Yassawi). The resulting p -schemes are systems of recurrences and, depending on their shape, are classified as automatic or linear. We revisit this approach, provide some additional details such as bounding the number of states, and suggest a third natural type of scheme that combines benefits of automatic and linear ones. We illustrate the utility of these “scaling” schemes by confirming and extending a conjecture of Rowland and Yassawi on Motzkin numbers.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40993-022-00337-6</doi><orcidid>https://orcid.org/0000-0001-6802-6053</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2522-0160
ispartof Research in number theory, 2022-09, Vol.8 (3), Article 42
issn 2522-0160
2363-9555
language eng
recordid cdi_proquest_journals_2683152317
source Springer Nature - Complete Springer Journals
subjects Combinatorial analysis
Mathematics
Mathematics and Statistics
Number Theory
title On congruence schemes for constant terms and their applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20congruence%20schemes%20for%20constant%20terms%20and%20their%20applications&rft.jtitle=Research%20in%20number%20theory&rft.au=Straub,%20Armin&rft.date=2022-09-01&rft.volume=8&rft.issue=3&rft.artnum=42&rft.issn=2522-0160&rft.eissn=2363-9555&rft_id=info:doi/10.1007/s40993-022-00337-6&rft_dat=%3Cproquest_cross%3E2683152317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2683152317&rft_id=info:pmid/&rfr_iscdi=true