Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning
Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity thre...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 10 |
creator | Masuyama, Naoki Amako, Narito Yamada, Yuna Nojima, Yusuke Ishibuchi, Hisao |
description | Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms. |
doi_str_mv | 10.1109/ACCESS.2022.3186479 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2682923627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9807317</ieee_id><doaj_id>oai_doaj_org_article_f3ecdf0784ac40d986304a878bf83223</doaj_id><sourcerecordid>2682923627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2c828c4a51fae88ba0687bd1bc10fa468f2a50b8eba1d29e821f0f91b9924d253</originalsourceid><addsrcrecordid>eNpNUUtr3DAQNqWFhjS_IBdBz97q4Yd0XNy0CSwUutuzGMujXS2u5UpySsifrzYOoXOZYeZ7DHxFccvohjGqvmy77m6_33DK-UYw2VSteldccdaoUtSief_f_LG4ifFMc8m8qtur4nk7wJzcI5KfGP0Ek0FyOKEPT2UPEQdy8LMf_dEZGEk3LjFhcNOR_HXpRIB8dY8uXtj3DgMEc3rB7VNYTFoCkg5m6Eck3pLOT8lNSz7vEMKURT4VHyyMEW9e-3Xx69vdobsvdz--P3TbXWkqKlPJjeTSVFAzCyhlD7SRbT-w3jBqoWqk5VDTXmIPbOAKJWeWWsV6pXg18FpcFw-r7uDhrOfgfkN40h6cfln4cNQQkjMjaivQDJa2soJsPijZCFqBbGVvpeBcZK3Pq9Yc_J8FY9Jnv4Qpv695I7niouFtRokVZYKPMaB9c2VUX0LTa2j6Epp-DS2zbleWQ8Q3hpK0FawV_wCyuJRk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682923627</pqid></control><display><type>article</type><title>Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Masuyama, Naoki ; Amako, Narito ; Yamada, Yuna ; Nojima, Yusuke ; Ishibuchi, Hisao</creator><creatorcontrib>Masuyama, Naoki ; Amako, Narito ; Yamada, Yuna ; Nojima, Yusuke ; Ishibuchi, Hisao</creatorcontrib><description>Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3186479</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive Resonance Theory ; Algorithms ; Big Data ; Cluster analysis ; Clustering ; Clustering algorithms ; Continual Learning ; Data mining ; Data points ; Hierarchical Clustering ; Information retrieval ; Kernel ; Machine learning ; Partitioning algorithms ; Resonance ; Similarity ; Structural hierarchy ; Subspace constraints ; Topological Clustering ; Topology ; Training data</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2c828c4a51fae88ba0687bd1bc10fa468f2a50b8eba1d29e821f0f91b9924d253</citedby><cites>FETCH-LOGICAL-c408t-2c828c4a51fae88ba0687bd1bc10fa468f2a50b8eba1d29e821f0f91b9924d253</cites><orcidid>0000-0001-9186-6472 ; 0000-0003-4853-1305 ; 0000-0002-2886-1588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9807317$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Masuyama, Naoki</creatorcontrib><creatorcontrib>Amako, Narito</creatorcontrib><creatorcontrib>Yamada, Yuna</creatorcontrib><creatorcontrib>Nojima, Yusuke</creatorcontrib><creatorcontrib>Ishibuchi, Hisao</creatorcontrib><title>Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.</description><subject>Adaptive Resonance Theory</subject><subject>Algorithms</subject><subject>Big Data</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Continual Learning</subject><subject>Data mining</subject><subject>Data points</subject><subject>Hierarchical Clustering</subject><subject>Information retrieval</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Partitioning algorithms</subject><subject>Resonance</subject><subject>Similarity</subject><subject>Structural hierarchy</subject><subject>Subspace constraints</subject><subject>Topological Clustering</subject><subject>Topology</subject><subject>Training data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtr3DAQNqWFhjS_IBdBz97q4Yd0XNy0CSwUutuzGMujXS2u5UpySsifrzYOoXOZYeZ7DHxFccvohjGqvmy77m6_33DK-UYw2VSteldccdaoUtSief_f_LG4ifFMc8m8qtur4nk7wJzcI5KfGP0Ek0FyOKEPT2UPEQdy8LMf_dEZGEk3LjFhcNOR_HXpRIB8dY8uXtj3DgMEc3rB7VNYTFoCkg5m6Eck3pLOT8lNSz7vEMKURT4VHyyMEW9e-3Xx69vdobsvdz--P3TbXWkqKlPJjeTSVFAzCyhlD7SRbT-w3jBqoWqk5VDTXmIPbOAKJWeWWsV6pXg18FpcFw-r7uDhrOfgfkN40h6cfln4cNQQkjMjaivQDJa2soJsPijZCFqBbGVvpeBcZK3Pq9Yc_J8FY9Jnv4Qpv695I7niouFtRokVZYKPMaB9c2VUX0LTa2j6Epp-DS2zbleWQ8Q3hpK0FawV_wCyuJRk</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Masuyama, Naoki</creator><creator>Amako, Narito</creator><creator>Yamada, Yuna</creator><creator>Nojima, Yusuke</creator><creator>Ishibuchi, Hisao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9186-6472</orcidid><orcidid>https://orcid.org/0000-0003-4853-1305</orcidid><orcidid>https://orcid.org/0000-0002-2886-1588</orcidid></search><sort><creationdate>2022</creationdate><title>Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning</title><author>Masuyama, Naoki ; Amako, Narito ; Yamada, Yuna ; Nojima, Yusuke ; Ishibuchi, Hisao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2c828c4a51fae88ba0687bd1bc10fa468f2a50b8eba1d29e821f0f91b9924d253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive Resonance Theory</topic><topic>Algorithms</topic><topic>Big Data</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Continual Learning</topic><topic>Data mining</topic><topic>Data points</topic><topic>Hierarchical Clustering</topic><topic>Information retrieval</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Partitioning algorithms</topic><topic>Resonance</topic><topic>Similarity</topic><topic>Structural hierarchy</topic><topic>Subspace constraints</topic><topic>Topological Clustering</topic><topic>Topology</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masuyama, Naoki</creatorcontrib><creatorcontrib>Amako, Narito</creatorcontrib><creatorcontrib>Yamada, Yuna</creatorcontrib><creatorcontrib>Nojima, Yusuke</creatorcontrib><creatorcontrib>Ishibuchi, Hisao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masuyama, Naoki</au><au>Amako, Narito</au><au>Yamada, Yuna</au><au>Nojima, Yusuke</au><au>Ishibuchi, Hisao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3186479</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9186-6472</orcidid><orcidid>https://orcid.org/0000-0003-4853-1305</orcidid><orcidid>https://orcid.org/0000-0002-2886-1588</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2682923627 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Adaptive Resonance Theory Algorithms Big Data Cluster analysis Clustering Clustering algorithms Continual Learning Data mining Data points Hierarchical Clustering Information retrieval Kernel Machine learning Partitioning algorithms Resonance Similarity Structural hierarchy Subspace constraints Topological Clustering Topology Training data |
title | Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Resonance%20Theory-based%20Topological%20Clustering%20with%20a%20Divisive%20Hierarchical%20Structure%20Capable%20of%20Continual%20Learning&rft.jtitle=IEEE%20access&rft.au=Masuyama,%20Naoki&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3186479&rft_dat=%3Cproquest_doaj_%3E2682923627%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682923627&rft_id=info:pmid/&rft_ieee_id=9807317&rft_doaj_id=oai_doaj_org_article_f3ecdf0784ac40d986304a878bf83223&rfr_iscdi=true |