Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning

Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity thre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.1-1
Hauptverfasser: Masuyama, Naoki, Amako, Narito, Yamada, Yuna, Nojima, Yusuke, Ishibuchi, Hisao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 10
creator Masuyama, Naoki
Amako, Narito
Yamada, Yuna
Nojima, Yusuke
Ishibuchi, Hisao
description Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.
doi_str_mv 10.1109/ACCESS.2022.3186479
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2682923627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9807317</ieee_id><doaj_id>oai_doaj_org_article_f3ecdf0784ac40d986304a878bf83223</doaj_id><sourcerecordid>2682923627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2c828c4a51fae88ba0687bd1bc10fa468f2a50b8eba1d29e821f0f91b9924d253</originalsourceid><addsrcrecordid>eNpNUUtr3DAQNqWFhjS_IBdBz97q4Yd0XNy0CSwUutuzGMujXS2u5UpySsifrzYOoXOZYeZ7DHxFccvohjGqvmy77m6_33DK-UYw2VSteldccdaoUtSief_f_LG4ifFMc8m8qtur4nk7wJzcI5KfGP0Ek0FyOKEPT2UPEQdy8LMf_dEZGEk3LjFhcNOR_HXpRIB8dY8uXtj3DgMEc3rB7VNYTFoCkg5m6Eck3pLOT8lNSz7vEMKURT4VHyyMEW9e-3Xx69vdobsvdz--P3TbXWkqKlPJjeTSVFAzCyhlD7SRbT-w3jBqoWqk5VDTXmIPbOAKJWeWWsV6pXg18FpcFw-r7uDhrOfgfkN40h6cfln4cNQQkjMjaivQDJa2soJsPijZCFqBbGVvpeBcZK3Pq9Yc_J8FY9Jnv4Qpv695I7niouFtRokVZYKPMaB9c2VUX0LTa2j6Epp-DS2zbleWQ8Q3hpK0FawV_wCyuJRk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682923627</pqid></control><display><type>article</type><title>Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Masuyama, Naoki ; Amako, Narito ; Yamada, Yuna ; Nojima, Yusuke ; Ishibuchi, Hisao</creator><creatorcontrib>Masuyama, Naoki ; Amako, Narito ; Yamada, Yuna ; Nojima, Yusuke ; Ishibuchi, Hisao</creatorcontrib><description>Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3186479</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive Resonance Theory ; Algorithms ; Big Data ; Cluster analysis ; Clustering ; Clustering algorithms ; Continual Learning ; Data mining ; Data points ; Hierarchical Clustering ; Information retrieval ; Kernel ; Machine learning ; Partitioning algorithms ; Resonance ; Similarity ; Structural hierarchy ; Subspace constraints ; Topological Clustering ; Topology ; Training data</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2c828c4a51fae88ba0687bd1bc10fa468f2a50b8eba1d29e821f0f91b9924d253</citedby><cites>FETCH-LOGICAL-c408t-2c828c4a51fae88ba0687bd1bc10fa468f2a50b8eba1d29e821f0f91b9924d253</cites><orcidid>0000-0001-9186-6472 ; 0000-0003-4853-1305 ; 0000-0002-2886-1588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9807317$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Masuyama, Naoki</creatorcontrib><creatorcontrib>Amako, Narito</creatorcontrib><creatorcontrib>Yamada, Yuna</creatorcontrib><creatorcontrib>Nojima, Yusuke</creatorcontrib><creatorcontrib>Ishibuchi, Hisao</creatorcontrib><title>Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.</description><subject>Adaptive Resonance Theory</subject><subject>Algorithms</subject><subject>Big Data</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Continual Learning</subject><subject>Data mining</subject><subject>Data points</subject><subject>Hierarchical Clustering</subject><subject>Information retrieval</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Partitioning algorithms</subject><subject>Resonance</subject><subject>Similarity</subject><subject>Structural hierarchy</subject><subject>Subspace constraints</subject><subject>Topological Clustering</subject><subject>Topology</subject><subject>Training data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtr3DAQNqWFhjS_IBdBz97q4Yd0XNy0CSwUutuzGMujXS2u5UpySsifrzYOoXOZYeZ7DHxFccvohjGqvmy77m6_33DK-UYw2VSteldccdaoUtSief_f_LG4ifFMc8m8qtur4nk7wJzcI5KfGP0Ek0FyOKEPT2UPEQdy8LMf_dEZGEk3LjFhcNOR_HXpRIB8dY8uXtj3DgMEc3rB7VNYTFoCkg5m6Eck3pLOT8lNSz7vEMKURT4VHyyMEW9e-3Xx69vdobsvdz--P3TbXWkqKlPJjeTSVFAzCyhlD7SRbT-w3jBqoWqk5VDTXmIPbOAKJWeWWsV6pXg18FpcFw-r7uDhrOfgfkN40h6cfln4cNQQkjMjaivQDJa2soJsPijZCFqBbGVvpeBcZK3Pq9Yc_J8FY9Jnv4Qpv695I7niouFtRokVZYKPMaB9c2VUX0LTa2j6Epp-DS2zbleWQ8Q3hpK0FawV_wCyuJRk</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Masuyama, Naoki</creator><creator>Amako, Narito</creator><creator>Yamada, Yuna</creator><creator>Nojima, Yusuke</creator><creator>Ishibuchi, Hisao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9186-6472</orcidid><orcidid>https://orcid.org/0000-0003-4853-1305</orcidid><orcidid>https://orcid.org/0000-0002-2886-1588</orcidid></search><sort><creationdate>2022</creationdate><title>Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning</title><author>Masuyama, Naoki ; Amako, Narito ; Yamada, Yuna ; Nojima, Yusuke ; Ishibuchi, Hisao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2c828c4a51fae88ba0687bd1bc10fa468f2a50b8eba1d29e821f0f91b9924d253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive Resonance Theory</topic><topic>Algorithms</topic><topic>Big Data</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Continual Learning</topic><topic>Data mining</topic><topic>Data points</topic><topic>Hierarchical Clustering</topic><topic>Information retrieval</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Partitioning algorithms</topic><topic>Resonance</topic><topic>Similarity</topic><topic>Structural hierarchy</topic><topic>Subspace constraints</topic><topic>Topological Clustering</topic><topic>Topology</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masuyama, Naoki</creatorcontrib><creatorcontrib>Amako, Narito</creatorcontrib><creatorcontrib>Yamada, Yuna</creatorcontrib><creatorcontrib>Nojima, Yusuke</creatorcontrib><creatorcontrib>Ishibuchi, Hisao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masuyama, Naoki</au><au>Amako, Narito</au><au>Yamada, Yuna</au><au>Nojima, Yusuke</au><au>Ishibuchi, Hisao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3186479</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9186-6472</orcidid><orcidid>https://orcid.org/0000-0003-4853-1305</orcidid><orcidid>https://orcid.org/0000-0002-2886-1588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2682923627
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adaptive Resonance Theory
Algorithms
Big Data
Cluster analysis
Clustering
Clustering algorithms
Continual Learning
Data mining
Data points
Hierarchical Clustering
Information retrieval
Kernel
Machine learning
Partitioning algorithms
Resonance
Similarity
Structural hierarchy
Subspace constraints
Topological Clustering
Topology
Training data
title Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Resonance%20Theory-based%20Topological%20Clustering%20with%20a%20Divisive%20Hierarchical%20Structure%20Capable%20of%20Continual%20Learning&rft.jtitle=IEEE%20access&rft.au=Masuyama,%20Naoki&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3186479&rft_dat=%3Cproquest_doaj_%3E2682923627%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682923627&rft_id=info:pmid/&rft_ieee_id=9807317&rft_doaj_id=oai_doaj_org_article_f3ecdf0784ac40d986304a878bf83223&rfr_iscdi=true