Wearable Iontronic FMG for Classification of Muscular Locomotion
Human motion recognition with high accuracy and fast response speed has long been considered an essential component in human-machine interactive activities such as assistive robotics, medical prosthesis, and wearable electronics. The force myography (FMG) signal has been the focus of much investigat...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2022-07, Vol.26 (7), p.2854-2863 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2863 |
---|---|
container_issue | 7 |
container_start_page | 2854 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 26 |
creator | Zou, Peikai Wang, Yaxin Cai, Huaxuan Peng, Tao Pan, Tingrui Li, Ruya Fan, Yubo |
description | Human motion recognition with high accuracy and fast response speed has long been considered an essential component in human-machine interactive activities such as assistive robotics, medical prosthesis, and wearable electronics. The force myography (FMG) signal has been the focus of much investigation in the search for a reliable and efficient muscular locomotion recognition system. However, the effect of the sensing system on FMG-based locomotion classification accuracy has yet to be understood. This study proposed a novel FMG sensing strategy for human lower limb locomotion classification based on flexible supercapacitive iontronic sensors. Benefiting from the ultrahigh sensitivity (up to 1 nF/mmHg) and low activation pressure (less than 5 mmHg) of the supercapacitive iontronic pressure sensor, FMG signal can be acquired accurately from 5 iontronic sensors strapped to the thigh. In the experiment with 12 subjects, the real-time classification strategy based on sliding window and SVM model gave an average locomotion classification accuracy of 99% for seven categories, including sitting, standing, walking on level ground, ramp ascent, ramp descent, stair ascent, stair descent. Compared with traditional FSR sensors, the result showed that iontronic sensors improved the classification accuracy by up to 10 percentage points in the case of short time window. The implementation of the high sensitivity flexible iontronic sensors in the wearable system brings a valuable tool for detecting small human body pressure signals and has great potential to improve the performance of the human-machine interface in rehabilitation and medical applications. |
doi_str_mv | 10.1109/JBHI.2022.3173968 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2682919745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9771387</ieee_id><sourcerecordid>2661953905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-9c0720f3a817ff8f0e68fa1aa18242c70b9d8dbcc34fd89e1b62a6d0f1da17173</originalsourceid><addsrcrecordid>eNpdkLtOwzAUhi0EolXpAyCWSCwsKT526ssGVPSCWrGAGC3HsaVUaVzsZODtcVRg4Czn6Nd3bj9C14BnAFjevzytNzOCCZlR4FQycYbGBJjICcHi_LcGWYzQNMY9TiGSJNklGtH5nDIBfIwePqwOumxstvFtF3xbm2y5W2XOh2zR6BhrVxvd1b7NvMt2fTR9o0O29cYf_CBfoQunm2inP3mC3pfPb4t1vn1dbRaP29xQwrpcGswJdlSnrc4Jhy0TToPWIEhBDMelrERVGkMLVwlpoWREswo7qDTw9OAE3Z3mHoP_7G3s1KGOxjaNbq3voyKMgZxTiecJvf2H7n0f2nRdogSRIHkxUHCiTPAxBuvUMdQHHb4UYDU4rAaH1eCw-nE49dycempr7R8vOQcqOP0Go0Bz3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682919745</pqid></control><display><type>article</type><title>Wearable Iontronic FMG for Classification of Muscular Locomotion</title><source>IEEE Electronic Library (IEL)</source><creator>Zou, Peikai ; Wang, Yaxin ; Cai, Huaxuan ; Peng, Tao ; Pan, Tingrui ; Li, Ruya ; Fan, Yubo</creator><creatorcontrib>Zou, Peikai ; Wang, Yaxin ; Cai, Huaxuan ; Peng, Tao ; Pan, Tingrui ; Li, Ruya ; Fan, Yubo</creatorcontrib><description>Human motion recognition with high accuracy and fast response speed has long been considered an essential component in human-machine interactive activities such as assistive robotics, medical prosthesis, and wearable electronics. The force myography (FMG) signal has been the focus of much investigation in the search for a reliable and efficient muscular locomotion recognition system. However, the effect of the sensing system on FMG-based locomotion classification accuracy has yet to be understood. This study proposed a novel FMG sensing strategy for human lower limb locomotion classification based on flexible supercapacitive iontronic sensors. Benefiting from the ultrahigh sensitivity (up to 1 nF/mmHg) and low activation pressure (less than 5 mmHg) of the supercapacitive iontronic pressure sensor, FMG signal can be acquired accurately from 5 iontronic sensors strapped to the thigh. In the experiment with 12 subjects, the real-time classification strategy based on sliding window and SVM model gave an average locomotion classification accuracy of 99% for seven categories, including sitting, standing, walking on level ground, ramp ascent, ramp descent, stair ascent, stair descent. Compared with traditional FSR sensors, the result showed that iontronic sensors improved the classification accuracy by up to 10 percentage points in the case of short time window. The implementation of the high sensitivity flexible iontronic sensors in the wearable system brings a valuable tool for detecting small human body pressure signals and has great potential to improve the performance of the human-machine interface in rehabilitation and medical applications.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2022.3173968</identifier><identifier>PMID: 35536817</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Ascent ; Classification ; Electrodes ; Force myography (FMG) ; gait cycle ; Human motion ; Human performance ; Locomotion ; locomotion classification ; Man-machine interfaces ; Motion perception ; Muscles ; Pressure ; Pressure sensors ; Prostheses ; Recognition ; Rehabilitation ; Robotics ; Sensitivity ; Sensors ; Substrates ; supercapacitive iontronic sensor ; Thigh ; Wearable sensors ; Wearable technology ; Windows (intervals)</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-07, Vol.26 (7), p.2854-2863</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-9c0720f3a817ff8f0e68fa1aa18242c70b9d8dbcc34fd89e1b62a6d0f1da17173</citedby><cites>FETCH-LOGICAL-c326t-9c0720f3a817ff8f0e68fa1aa18242c70b9d8dbcc34fd89e1b62a6d0f1da17173</cites><orcidid>0000-0002-8851-0667 ; 0000-0002-0336-4569 ; 0000-0003-3834-2607 ; 0000-0002-3480-4395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9771387$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9771387$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zou, Peikai</creatorcontrib><creatorcontrib>Wang, Yaxin</creatorcontrib><creatorcontrib>Cai, Huaxuan</creatorcontrib><creatorcontrib>Peng, Tao</creatorcontrib><creatorcontrib>Pan, Tingrui</creatorcontrib><creatorcontrib>Li, Ruya</creatorcontrib><creatorcontrib>Fan, Yubo</creatorcontrib><title>Wearable Iontronic FMG for Classification of Muscular Locomotion</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><description>Human motion recognition with high accuracy and fast response speed has long been considered an essential component in human-machine interactive activities such as assistive robotics, medical prosthesis, and wearable electronics. The force myography (FMG) signal has been the focus of much investigation in the search for a reliable and efficient muscular locomotion recognition system. However, the effect of the sensing system on FMG-based locomotion classification accuracy has yet to be understood. This study proposed a novel FMG sensing strategy for human lower limb locomotion classification based on flexible supercapacitive iontronic sensors. Benefiting from the ultrahigh sensitivity (up to 1 nF/mmHg) and low activation pressure (less than 5 mmHg) of the supercapacitive iontronic pressure sensor, FMG signal can be acquired accurately from 5 iontronic sensors strapped to the thigh. In the experiment with 12 subjects, the real-time classification strategy based on sliding window and SVM model gave an average locomotion classification accuracy of 99% for seven categories, including sitting, standing, walking on level ground, ramp ascent, ramp descent, stair ascent, stair descent. Compared with traditional FSR sensors, the result showed that iontronic sensors improved the classification accuracy by up to 10 percentage points in the case of short time window. The implementation of the high sensitivity flexible iontronic sensors in the wearable system brings a valuable tool for detecting small human body pressure signals and has great potential to improve the performance of the human-machine interface in rehabilitation and medical applications.</description><subject>Accuracy</subject><subject>Ascent</subject><subject>Classification</subject><subject>Electrodes</subject><subject>Force myography (FMG)</subject><subject>gait cycle</subject><subject>Human motion</subject><subject>Human performance</subject><subject>Locomotion</subject><subject>locomotion classification</subject><subject>Man-machine interfaces</subject><subject>Motion perception</subject><subject>Muscles</subject><subject>Pressure</subject><subject>Pressure sensors</subject><subject>Prostheses</subject><subject>Recognition</subject><subject>Rehabilitation</subject><subject>Robotics</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Substrates</subject><subject>supercapacitive iontronic sensor</subject><subject>Thigh</subject><subject>Wearable sensors</subject><subject>Wearable technology</subject><subject>Windows (intervals)</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLtOwzAUhi0EolXpAyCWSCwsKT526ssGVPSCWrGAGC3HsaVUaVzsZODtcVRg4Czn6Nd3bj9C14BnAFjevzytNzOCCZlR4FQycYbGBJjICcHi_LcGWYzQNMY9TiGSJNklGtH5nDIBfIwePqwOumxstvFtF3xbm2y5W2XOh2zR6BhrVxvd1b7NvMt2fTR9o0O29cYf_CBfoQunm2inP3mC3pfPb4t1vn1dbRaP29xQwrpcGswJdlSnrc4Jhy0TToPWIEhBDMelrERVGkMLVwlpoWREswo7qDTw9OAE3Z3mHoP_7G3s1KGOxjaNbq3voyKMgZxTiecJvf2H7n0f2nRdogSRIHkxUHCiTPAxBuvUMdQHHb4UYDU4rAaH1eCw-nE49dycempr7R8vOQcqOP0Go0Bz3w</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zou, Peikai</creator><creator>Wang, Yaxin</creator><creator>Cai, Huaxuan</creator><creator>Peng, Tao</creator><creator>Pan, Tingrui</creator><creator>Li, Ruya</creator><creator>Fan, Yubo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8851-0667</orcidid><orcidid>https://orcid.org/0000-0002-0336-4569</orcidid><orcidid>https://orcid.org/0000-0003-3834-2607</orcidid><orcidid>https://orcid.org/0000-0002-3480-4395</orcidid></search><sort><creationdate>20220701</creationdate><title>Wearable Iontronic FMG for Classification of Muscular Locomotion</title><author>Zou, Peikai ; Wang, Yaxin ; Cai, Huaxuan ; Peng, Tao ; Pan, Tingrui ; Li, Ruya ; Fan, Yubo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-9c0720f3a817ff8f0e68fa1aa18242c70b9d8dbcc34fd89e1b62a6d0f1da17173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Ascent</topic><topic>Classification</topic><topic>Electrodes</topic><topic>Force myography (FMG)</topic><topic>gait cycle</topic><topic>Human motion</topic><topic>Human performance</topic><topic>Locomotion</topic><topic>locomotion classification</topic><topic>Man-machine interfaces</topic><topic>Motion perception</topic><topic>Muscles</topic><topic>Pressure</topic><topic>Pressure sensors</topic><topic>Prostheses</topic><topic>Recognition</topic><topic>Rehabilitation</topic><topic>Robotics</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Substrates</topic><topic>supercapacitive iontronic sensor</topic><topic>Thigh</topic><topic>Wearable sensors</topic><topic>Wearable technology</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Peikai</creatorcontrib><creatorcontrib>Wang, Yaxin</creatorcontrib><creatorcontrib>Cai, Huaxuan</creatorcontrib><creatorcontrib>Peng, Tao</creatorcontrib><creatorcontrib>Pan, Tingrui</creatorcontrib><creatorcontrib>Li, Ruya</creatorcontrib><creatorcontrib>Fan, Yubo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zou, Peikai</au><au>Wang, Yaxin</au><au>Cai, Huaxuan</au><au>Peng, Tao</au><au>Pan, Tingrui</au><au>Li, Ruya</au><au>Fan, Yubo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wearable Iontronic FMG for Classification of Muscular Locomotion</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>26</volume><issue>7</issue><spage>2854</spage><epage>2863</epage><pages>2854-2863</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Human motion recognition with high accuracy and fast response speed has long been considered an essential component in human-machine interactive activities such as assistive robotics, medical prosthesis, and wearable electronics. The force myography (FMG) signal has been the focus of much investigation in the search for a reliable and efficient muscular locomotion recognition system. However, the effect of the sensing system on FMG-based locomotion classification accuracy has yet to be understood. This study proposed a novel FMG sensing strategy for human lower limb locomotion classification based on flexible supercapacitive iontronic sensors. Benefiting from the ultrahigh sensitivity (up to 1 nF/mmHg) and low activation pressure (less than 5 mmHg) of the supercapacitive iontronic pressure sensor, FMG signal can be acquired accurately from 5 iontronic sensors strapped to the thigh. In the experiment with 12 subjects, the real-time classification strategy based on sliding window and SVM model gave an average locomotion classification accuracy of 99% for seven categories, including sitting, standing, walking on level ground, ramp ascent, ramp descent, stair ascent, stair descent. Compared with traditional FSR sensors, the result showed that iontronic sensors improved the classification accuracy by up to 10 percentage points in the case of short time window. The implementation of the high sensitivity flexible iontronic sensors in the wearable system brings a valuable tool for detecting small human body pressure signals and has great potential to improve the performance of the human-machine interface in rehabilitation and medical applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>35536817</pmid><doi>10.1109/JBHI.2022.3173968</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8851-0667</orcidid><orcidid>https://orcid.org/0000-0002-0336-4569</orcidid><orcidid>https://orcid.org/0000-0003-3834-2607</orcidid><orcidid>https://orcid.org/0000-0002-3480-4395</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2022-07, Vol.26 (7), p.2854-2863 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_journals_2682919745 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Ascent Classification Electrodes Force myography (FMG) gait cycle Human motion Human performance Locomotion locomotion classification Man-machine interfaces Motion perception Muscles Pressure Pressure sensors Prostheses Recognition Rehabilitation Robotics Sensitivity Sensors Substrates supercapacitive iontronic sensor Thigh Wearable sensors Wearable technology Windows (intervals) |
title | Wearable Iontronic FMG for Classification of Muscular Locomotion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wearable%20Iontronic%20FMG%20for%20Classification%20of%20Muscular%20Locomotion&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Zou,%20Peikai&rft.date=2022-07-01&rft.volume=26&rft.issue=7&rft.spage=2854&rft.epage=2863&rft.pages=2854-2863&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2022.3173968&rft_dat=%3Cproquest_RIE%3E2661953905%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682919745&rft_id=info:pmid/35536817&rft_ieee_id=9771387&rfr_iscdi=true |