Wearable Iontronic FMG for Classification of Muscular Locomotion

Human motion recognition with high accuracy and fast response speed has long been considered an essential component in human-machine interactive activities such as assistive robotics, medical prosthesis, and wearable electronics. The force myography (FMG) signal has been the focus of much investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2022-07, Vol.26 (7), p.2854-2863
Hauptverfasser: Zou, Peikai, Wang, Yaxin, Cai, Huaxuan, Peng, Tao, Pan, Tingrui, Li, Ruya, Fan, Yubo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2863
container_issue 7
container_start_page 2854
container_title IEEE journal of biomedical and health informatics
container_volume 26
creator Zou, Peikai
Wang, Yaxin
Cai, Huaxuan
Peng, Tao
Pan, Tingrui
Li, Ruya
Fan, Yubo
description Human motion recognition with high accuracy and fast response speed has long been considered an essential component in human-machine interactive activities such as assistive robotics, medical prosthesis, and wearable electronics. The force myography (FMG) signal has been the focus of much investigation in the search for a reliable and efficient muscular locomotion recognition system. However, the effect of the sensing system on FMG-based locomotion classification accuracy has yet to be understood. This study proposed a novel FMG sensing strategy for human lower limb locomotion classification based on flexible supercapacitive iontronic sensors. Benefiting from the ultrahigh sensitivity (up to 1 nF/mmHg) and low activation pressure (less than 5 mmHg) of the supercapacitive iontronic pressure sensor, FMG signal can be acquired accurately from 5 iontronic sensors strapped to the thigh. In the experiment with 12 subjects, the real-time classification strategy based on sliding window and SVM model gave an average locomotion classification accuracy of 99% for seven categories, including sitting, standing, walking on level ground, ramp ascent, ramp descent, stair ascent, stair descent. Compared with traditional FSR sensors, the result showed that iontronic sensors improved the classification accuracy by up to 10 percentage points in the case of short time window. The implementation of the high sensitivity flexible iontronic sensors in the wearable system brings a valuable tool for detecting small human body pressure signals and has great potential to improve the performance of the human-machine interface in rehabilitation and medical applications.
doi_str_mv 10.1109/JBHI.2022.3173968
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2682919745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9771387</ieee_id><sourcerecordid>2661953905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-9c0720f3a817ff8f0e68fa1aa18242c70b9d8dbcc34fd89e1b62a6d0f1da17173</originalsourceid><addsrcrecordid>eNpdkLtOwzAUhi0EolXpAyCWSCwsKT526ssGVPSCWrGAGC3HsaVUaVzsZODtcVRg4Czn6Nd3bj9C14BnAFjevzytNzOCCZlR4FQycYbGBJjICcHi_LcGWYzQNMY9TiGSJNklGtH5nDIBfIwePqwOumxstvFtF3xbm2y5W2XOh2zR6BhrVxvd1b7NvMt2fTR9o0O29cYf_CBfoQunm2inP3mC3pfPb4t1vn1dbRaP29xQwrpcGswJdlSnrc4Jhy0TToPWIEhBDMelrERVGkMLVwlpoWREswo7qDTw9OAE3Z3mHoP_7G3s1KGOxjaNbq3voyKMgZxTiecJvf2H7n0f2nRdogSRIHkxUHCiTPAxBuvUMdQHHb4UYDU4rAaH1eCw-nE49dycempr7R8vOQcqOP0Go0Bz3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682919745</pqid></control><display><type>article</type><title>Wearable Iontronic FMG for Classification of Muscular Locomotion</title><source>IEEE Electronic Library (IEL)</source><creator>Zou, Peikai ; Wang, Yaxin ; Cai, Huaxuan ; Peng, Tao ; Pan, Tingrui ; Li, Ruya ; Fan, Yubo</creator><creatorcontrib>Zou, Peikai ; Wang, Yaxin ; Cai, Huaxuan ; Peng, Tao ; Pan, Tingrui ; Li, Ruya ; Fan, Yubo</creatorcontrib><description>Human motion recognition with high accuracy and fast response speed has long been considered an essential component in human-machine interactive activities such as assistive robotics, medical prosthesis, and wearable electronics. The force myography (FMG) signal has been the focus of much investigation in the search for a reliable and efficient muscular locomotion recognition system. However, the effect of the sensing system on FMG-based locomotion classification accuracy has yet to be understood. This study proposed a novel FMG sensing strategy for human lower limb locomotion classification based on flexible supercapacitive iontronic sensors. Benefiting from the ultrahigh sensitivity (up to 1 nF/mmHg) and low activation pressure (less than 5 mmHg) of the supercapacitive iontronic pressure sensor, FMG signal can be acquired accurately from 5 iontronic sensors strapped to the thigh. In the experiment with 12 subjects, the real-time classification strategy based on sliding window and SVM model gave an average locomotion classification accuracy of 99% for seven categories, including sitting, standing, walking on level ground, ramp ascent, ramp descent, stair ascent, stair descent. Compared with traditional FSR sensors, the result showed that iontronic sensors improved the classification accuracy by up to 10 percentage points in the case of short time window. The implementation of the high sensitivity flexible iontronic sensors in the wearable system brings a valuable tool for detecting small human body pressure signals and has great potential to improve the performance of the human-machine interface in rehabilitation and medical applications.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2022.3173968</identifier><identifier>PMID: 35536817</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Ascent ; Classification ; Electrodes ; Force myography (FMG) ; gait cycle ; Human motion ; Human performance ; Locomotion ; locomotion classification ; Man-machine interfaces ; Motion perception ; Muscles ; Pressure ; Pressure sensors ; Prostheses ; Recognition ; Rehabilitation ; Robotics ; Sensitivity ; Sensors ; Substrates ; supercapacitive iontronic sensor ; Thigh ; Wearable sensors ; Wearable technology ; Windows (intervals)</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-07, Vol.26 (7), p.2854-2863</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-9c0720f3a817ff8f0e68fa1aa18242c70b9d8dbcc34fd89e1b62a6d0f1da17173</citedby><cites>FETCH-LOGICAL-c326t-9c0720f3a817ff8f0e68fa1aa18242c70b9d8dbcc34fd89e1b62a6d0f1da17173</cites><orcidid>0000-0002-8851-0667 ; 0000-0002-0336-4569 ; 0000-0003-3834-2607 ; 0000-0002-3480-4395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9771387$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9771387$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zou, Peikai</creatorcontrib><creatorcontrib>Wang, Yaxin</creatorcontrib><creatorcontrib>Cai, Huaxuan</creatorcontrib><creatorcontrib>Peng, Tao</creatorcontrib><creatorcontrib>Pan, Tingrui</creatorcontrib><creatorcontrib>Li, Ruya</creatorcontrib><creatorcontrib>Fan, Yubo</creatorcontrib><title>Wearable Iontronic FMG for Classification of Muscular Locomotion</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><description>Human motion recognition with high accuracy and fast response speed has long been considered an essential component in human-machine interactive activities such as assistive robotics, medical prosthesis, and wearable electronics. The force myography (FMG) signal has been the focus of much investigation in the search for a reliable and efficient muscular locomotion recognition system. However, the effect of the sensing system on FMG-based locomotion classification accuracy has yet to be understood. This study proposed a novel FMG sensing strategy for human lower limb locomotion classification based on flexible supercapacitive iontronic sensors. Benefiting from the ultrahigh sensitivity (up to 1 nF/mmHg) and low activation pressure (less than 5 mmHg) of the supercapacitive iontronic pressure sensor, FMG signal can be acquired accurately from 5 iontronic sensors strapped to the thigh. In the experiment with 12 subjects, the real-time classification strategy based on sliding window and SVM model gave an average locomotion classification accuracy of 99% for seven categories, including sitting, standing, walking on level ground, ramp ascent, ramp descent, stair ascent, stair descent. Compared with traditional FSR sensors, the result showed that iontronic sensors improved the classification accuracy by up to 10 percentage points in the case of short time window. The implementation of the high sensitivity flexible iontronic sensors in the wearable system brings a valuable tool for detecting small human body pressure signals and has great potential to improve the performance of the human-machine interface in rehabilitation and medical applications.</description><subject>Accuracy</subject><subject>Ascent</subject><subject>Classification</subject><subject>Electrodes</subject><subject>Force myography (FMG)</subject><subject>gait cycle</subject><subject>Human motion</subject><subject>Human performance</subject><subject>Locomotion</subject><subject>locomotion classification</subject><subject>Man-machine interfaces</subject><subject>Motion perception</subject><subject>Muscles</subject><subject>Pressure</subject><subject>Pressure sensors</subject><subject>Prostheses</subject><subject>Recognition</subject><subject>Rehabilitation</subject><subject>Robotics</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Substrates</subject><subject>supercapacitive iontronic sensor</subject><subject>Thigh</subject><subject>Wearable sensors</subject><subject>Wearable technology</subject><subject>Windows (intervals)</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLtOwzAUhi0EolXpAyCWSCwsKT526ssGVPSCWrGAGC3HsaVUaVzsZODtcVRg4Czn6Nd3bj9C14BnAFjevzytNzOCCZlR4FQycYbGBJjICcHi_LcGWYzQNMY9TiGSJNklGtH5nDIBfIwePqwOumxstvFtF3xbm2y5W2XOh2zR6BhrVxvd1b7NvMt2fTR9o0O29cYf_CBfoQunm2inP3mC3pfPb4t1vn1dbRaP29xQwrpcGswJdlSnrc4Jhy0TToPWIEhBDMelrERVGkMLVwlpoWREswo7qDTw9OAE3Z3mHoP_7G3s1KGOxjaNbq3voyKMgZxTiecJvf2H7n0f2nRdogSRIHkxUHCiTPAxBuvUMdQHHb4UYDU4rAaH1eCw-nE49dycempr7R8vOQcqOP0Go0Bz3w</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zou, Peikai</creator><creator>Wang, Yaxin</creator><creator>Cai, Huaxuan</creator><creator>Peng, Tao</creator><creator>Pan, Tingrui</creator><creator>Li, Ruya</creator><creator>Fan, Yubo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8851-0667</orcidid><orcidid>https://orcid.org/0000-0002-0336-4569</orcidid><orcidid>https://orcid.org/0000-0003-3834-2607</orcidid><orcidid>https://orcid.org/0000-0002-3480-4395</orcidid></search><sort><creationdate>20220701</creationdate><title>Wearable Iontronic FMG for Classification of Muscular Locomotion</title><author>Zou, Peikai ; Wang, Yaxin ; Cai, Huaxuan ; Peng, Tao ; Pan, Tingrui ; Li, Ruya ; Fan, Yubo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-9c0720f3a817ff8f0e68fa1aa18242c70b9d8dbcc34fd89e1b62a6d0f1da17173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Ascent</topic><topic>Classification</topic><topic>Electrodes</topic><topic>Force myography (FMG)</topic><topic>gait cycle</topic><topic>Human motion</topic><topic>Human performance</topic><topic>Locomotion</topic><topic>locomotion classification</topic><topic>Man-machine interfaces</topic><topic>Motion perception</topic><topic>Muscles</topic><topic>Pressure</topic><topic>Pressure sensors</topic><topic>Prostheses</topic><topic>Recognition</topic><topic>Rehabilitation</topic><topic>Robotics</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Substrates</topic><topic>supercapacitive iontronic sensor</topic><topic>Thigh</topic><topic>Wearable sensors</topic><topic>Wearable technology</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Peikai</creatorcontrib><creatorcontrib>Wang, Yaxin</creatorcontrib><creatorcontrib>Cai, Huaxuan</creatorcontrib><creatorcontrib>Peng, Tao</creatorcontrib><creatorcontrib>Pan, Tingrui</creatorcontrib><creatorcontrib>Li, Ruya</creatorcontrib><creatorcontrib>Fan, Yubo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zou, Peikai</au><au>Wang, Yaxin</au><au>Cai, Huaxuan</au><au>Peng, Tao</au><au>Pan, Tingrui</au><au>Li, Ruya</au><au>Fan, Yubo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wearable Iontronic FMG for Classification of Muscular Locomotion</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>26</volume><issue>7</issue><spage>2854</spage><epage>2863</epage><pages>2854-2863</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Human motion recognition with high accuracy and fast response speed has long been considered an essential component in human-machine interactive activities such as assistive robotics, medical prosthesis, and wearable electronics. The force myography (FMG) signal has been the focus of much investigation in the search for a reliable and efficient muscular locomotion recognition system. However, the effect of the sensing system on FMG-based locomotion classification accuracy has yet to be understood. This study proposed a novel FMG sensing strategy for human lower limb locomotion classification based on flexible supercapacitive iontronic sensors. Benefiting from the ultrahigh sensitivity (up to 1 nF/mmHg) and low activation pressure (less than 5 mmHg) of the supercapacitive iontronic pressure sensor, FMG signal can be acquired accurately from 5 iontronic sensors strapped to the thigh. In the experiment with 12 subjects, the real-time classification strategy based on sliding window and SVM model gave an average locomotion classification accuracy of 99% for seven categories, including sitting, standing, walking on level ground, ramp ascent, ramp descent, stair ascent, stair descent. Compared with traditional FSR sensors, the result showed that iontronic sensors improved the classification accuracy by up to 10 percentage points in the case of short time window. The implementation of the high sensitivity flexible iontronic sensors in the wearable system brings a valuable tool for detecting small human body pressure signals and has great potential to improve the performance of the human-machine interface in rehabilitation and medical applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>35536817</pmid><doi>10.1109/JBHI.2022.3173968</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8851-0667</orcidid><orcidid>https://orcid.org/0000-0002-0336-4569</orcidid><orcidid>https://orcid.org/0000-0003-3834-2607</orcidid><orcidid>https://orcid.org/0000-0002-3480-4395</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2022-07, Vol.26 (7), p.2854-2863
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_journals_2682919745
source IEEE Electronic Library (IEL)
subjects Accuracy
Ascent
Classification
Electrodes
Force myography (FMG)
gait cycle
Human motion
Human performance
Locomotion
locomotion classification
Man-machine interfaces
Motion perception
Muscles
Pressure
Pressure sensors
Prostheses
Recognition
Rehabilitation
Robotics
Sensitivity
Sensors
Substrates
supercapacitive iontronic sensor
Thigh
Wearable sensors
Wearable technology
Windows (intervals)
title Wearable Iontronic FMG for Classification of Muscular Locomotion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wearable%20Iontronic%20FMG%20for%20Classification%20of%20Muscular%20Locomotion&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Zou,%20Peikai&rft.date=2022-07-01&rft.volume=26&rft.issue=7&rft.spage=2854&rft.epage=2863&rft.pages=2854-2863&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2022.3173968&rft_dat=%3Cproquest_RIE%3E2661953905%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682919745&rft_id=info:pmid/35536817&rft_ieee_id=9771387&rfr_iscdi=true