Learning of 3D Graph Convolution Networks for Point Cloud Analysis
Point clouds are among the popular geometry representations in 3D vision. However, unlike 2D images with pixel-wise layouts, such representations containing unordered data points which make the processing and understanding the associated semantic information quite challenging. Although a number of p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2022-08, Vol.44 (8), p.4212-4224 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4224 |
---|---|
container_issue | 8 |
container_start_page | 4212 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 44 |
creator | Lin, Zhi-Hao Huang, Sheng-Yu Wang, Yu-Chiang Frank |
description | Point clouds are among the popular geometry representations in 3D vision. However, unlike 2D images with pixel-wise layouts, such representations containing unordered data points which make the processing and understanding the associated semantic information quite challenging. Although a number of previous works attempt to analyze point clouds and achieve promising performances, their performances would degrade significantly when data variations like shift and scale changes are presented. In this paper, we propose 3D graph convolution networks (3D-GCN) , which uniquely learns 3D kernels with graph max-pooling mechanisms for extracting geometric features from point cloud data across different scales. We show that, with the proposed 3D-GCN, satisfactory shift and scale invariance can be jointly achieved. We show that 3D-GCN can be applied to point cloud classification and segmentation tasks, with ablation studies and visualizations verifying the design of 3D-GCN. |
doi_str_mv | 10.1109/TPAMI.2021.3059758 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2682919425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9355025</ieee_id><sourcerecordid>2490604265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a041d6d95a7cd2459d5acb7c9a9b35f47d38b3aefbfa001a245d2013a65557423</originalsourceid><addsrcrecordid>eNpdkLtOwzAUhi0EoqXwAiAhSywsKb4m8VgClEoFOpTZcmIHUtK42Amob49LSwemM5zvP5cPgHOMhhgjcTOfjZ4mQ4IIHlLERcLTA9DHgoqIcioOQR_hmERpStIeOPF-gRBmHNFj0KOUCyww7oPbqVGuqZo3aEtI7-DYqdU7zGzzZeuurWwDn037bd2Hh6V1cGarpoVZbTsNR42q177yp-CoVLU3Z7s6AK8P9_PsMZq-jCfZaBoVDKE2UohhHWvBVVJowrjQXBV5UgglcspLlmia5lSZMi9VuFQFRBOEqYo55wkjdACut3NXzn52xrdyWfnC1LVqjO28JEygGDES84Be_UMXtnPh3kDFKQm_M7KhyJYqnPXemVKuXLVUbi0xkhvD8tew3BiWO8MhdLkb3eVLo_eRP6UBuNgClTFm3xaUcxR2_gCPTX2L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682919425</pqid></control><display><type>article</type><title>Learning of 3D Graph Convolution Networks for Point Cloud Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Zhi-Hao ; Huang, Sheng-Yu ; Wang, Yu-Chiang Frank</creator><creatorcontrib>Lin, Zhi-Hao ; Huang, Sheng-Yu ; Wang, Yu-Chiang Frank</creatorcontrib><description>Point clouds are among the popular geometry representations in 3D vision. However, unlike 2D images with pixel-wise layouts, such representations containing unordered data points which make the processing and understanding the associated semantic information quite challenging. Although a number of previous works attempt to analyze point clouds and achieve promising performances, their performances would degrade significantly when data variations like shift and scale changes are presented. In this paper, we propose 3D graph convolution networks (3D-GCN) , which uniquely learns 3D kernels with graph max-pooling mechanisms for extracting geometric features from point cloud data across different scales. We show that, with the proposed 3D-GCN, satisfactory shift and scale invariance can be jointly achieved. We show that 3D-GCN can be applied to point cloud classification and segmentation tasks, with ablation studies and visualizations verifying the design of 3D-GCN.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3059758</identifier><identifier>PMID: 33591911</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D classification ; 3D segmentation ; 3D vision ; Ablation ; Convolution ; Data points ; deformable kernels ; Feature extraction ; graph convolution networks ; Image segmentation ; Kernel ; point clouds ; Representations ; Scale invariance ; Shape ; Task analysis ; Three dimensional models ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-08, Vol.44 (8), p.4212-4224</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-a041d6d95a7cd2459d5acb7c9a9b35f47d38b3aefbfa001a245d2013a65557423</citedby><cites>FETCH-LOGICAL-c400t-a041d6d95a7cd2459d5acb7c9a9b35f47d38b3aefbfa001a245d2013a65557423</cites><orcidid>0000-0002-2333-157X ; 0000-0002-3149-9620 ; 0000-0002-4831-5488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9355025$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9355025$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33591911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Zhi-Hao</creatorcontrib><creatorcontrib>Huang, Sheng-Yu</creatorcontrib><creatorcontrib>Wang, Yu-Chiang Frank</creatorcontrib><title>Learning of 3D Graph Convolution Networks for Point Cloud Analysis</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Point clouds are among the popular geometry representations in 3D vision. However, unlike 2D images with pixel-wise layouts, such representations containing unordered data points which make the processing and understanding the associated semantic information quite challenging. Although a number of previous works attempt to analyze point clouds and achieve promising performances, their performances would degrade significantly when data variations like shift and scale changes are presented. In this paper, we propose 3D graph convolution networks (3D-GCN) , which uniquely learns 3D kernels with graph max-pooling mechanisms for extracting geometric features from point cloud data across different scales. We show that, with the proposed 3D-GCN, satisfactory shift and scale invariance can be jointly achieved. We show that 3D-GCN can be applied to point cloud classification and segmentation tasks, with ablation studies and visualizations verifying the design of 3D-GCN.</description><subject>3D classification</subject><subject>3D segmentation</subject><subject>3D vision</subject><subject>Ablation</subject><subject>Convolution</subject><subject>Data points</subject><subject>deformable kernels</subject><subject>Feature extraction</subject><subject>graph convolution networks</subject><subject>Image segmentation</subject><subject>Kernel</subject><subject>point clouds</subject><subject>Representations</subject><subject>Scale invariance</subject><subject>Shape</subject><subject>Task analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLtOwzAUhi0EoqXwAiAhSywsKb4m8VgClEoFOpTZcmIHUtK42Amob49LSwemM5zvP5cPgHOMhhgjcTOfjZ4mQ4IIHlLERcLTA9DHgoqIcioOQR_hmERpStIeOPF-gRBmHNFj0KOUCyww7oPbqVGuqZo3aEtI7-DYqdU7zGzzZeuurWwDn037bd2Hh6V1cGarpoVZbTsNR42q177yp-CoVLU3Z7s6AK8P9_PsMZq-jCfZaBoVDKE2UohhHWvBVVJowrjQXBV5UgglcspLlmia5lSZMi9VuFQFRBOEqYo55wkjdACut3NXzn52xrdyWfnC1LVqjO28JEygGDES84Be_UMXtnPh3kDFKQm_M7KhyJYqnPXemVKuXLVUbi0xkhvD8tew3BiWO8MhdLkb3eVLo_eRP6UBuNgClTFm3xaUcxR2_gCPTX2L</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Lin, Zhi-Hao</creator><creator>Huang, Sheng-Yu</creator><creator>Wang, Yu-Chiang Frank</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2333-157X</orcidid><orcidid>https://orcid.org/0000-0002-3149-9620</orcidid><orcidid>https://orcid.org/0000-0002-4831-5488</orcidid></search><sort><creationdate>20220801</creationdate><title>Learning of 3D Graph Convolution Networks for Point Cloud Analysis</title><author>Lin, Zhi-Hao ; Huang, Sheng-Yu ; Wang, Yu-Chiang Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a041d6d95a7cd2459d5acb7c9a9b35f47d38b3aefbfa001a245d2013a65557423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D classification</topic><topic>3D segmentation</topic><topic>3D vision</topic><topic>Ablation</topic><topic>Convolution</topic><topic>Data points</topic><topic>deformable kernels</topic><topic>Feature extraction</topic><topic>graph convolution networks</topic><topic>Image segmentation</topic><topic>Kernel</topic><topic>point clouds</topic><topic>Representations</topic><topic>Scale invariance</topic><topic>Shape</topic><topic>Task analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zhi-Hao</creatorcontrib><creatorcontrib>Huang, Sheng-Yu</creatorcontrib><creatorcontrib>Wang, Yu-Chiang Frank</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Zhi-Hao</au><au>Huang, Sheng-Yu</au><au>Wang, Yu-Chiang Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning of 3D Graph Convolution Networks for Point Cloud Analysis</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>44</volume><issue>8</issue><spage>4212</spage><epage>4224</epage><pages>4212-4224</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Point clouds are among the popular geometry representations in 3D vision. However, unlike 2D images with pixel-wise layouts, such representations containing unordered data points which make the processing and understanding the associated semantic information quite challenging. Although a number of previous works attempt to analyze point clouds and achieve promising performances, their performances would degrade significantly when data variations like shift and scale changes are presented. In this paper, we propose 3D graph convolution networks (3D-GCN) , which uniquely learns 3D kernels with graph max-pooling mechanisms for extracting geometric features from point cloud data across different scales. We show that, with the proposed 3D-GCN, satisfactory shift and scale invariance can be jointly achieved. We show that 3D-GCN can be applied to point cloud classification and segmentation tasks, with ablation studies and visualizations verifying the design of 3D-GCN.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33591911</pmid><doi>10.1109/TPAMI.2021.3059758</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2333-157X</orcidid><orcidid>https://orcid.org/0000-0002-3149-9620</orcidid><orcidid>https://orcid.org/0000-0002-4831-5488</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2022-08, Vol.44 (8), p.4212-4224 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_2682919425 |
source | IEEE Electronic Library (IEL) |
subjects | 3D classification 3D segmentation 3D vision Ablation Convolution Data points deformable kernels Feature extraction graph convolution networks Image segmentation Kernel point clouds Representations Scale invariance Shape Task analysis Three dimensional models Three-dimensional displays Two dimensional displays |
title | Learning of 3D Graph Convolution Networks for Point Cloud Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20of%203D%20Graph%20Convolution%20Networks%20for%20Point%20Cloud%20Analysis&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Lin,%20Zhi-Hao&rft.date=2022-08-01&rft.volume=44&rft.issue=8&rft.spage=4212&rft.epage=4224&rft.pages=4212-4224&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3059758&rft_dat=%3Cproquest_RIE%3E2490604265%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682919425&rft_id=info:pmid/33591911&rft_ieee_id=9355025&rfr_iscdi=true |