Learning of 3D Graph Convolution Networks for Point Cloud Analysis

Point clouds are among the popular geometry representations in 3D vision. However, unlike 2D images with pixel-wise layouts, such representations containing unordered data points which make the processing and understanding the associated semantic information quite challenging. Although a number of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2022-08, Vol.44 (8), p.4212-4224
Hauptverfasser: Lin, Zhi-Hao, Huang, Sheng-Yu, Wang, Yu-Chiang Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4224
container_issue 8
container_start_page 4212
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 44
creator Lin, Zhi-Hao
Huang, Sheng-Yu
Wang, Yu-Chiang Frank
description Point clouds are among the popular geometry representations in 3D vision. However, unlike 2D images with pixel-wise layouts, such representations containing unordered data points which make the processing and understanding the associated semantic information quite challenging. Although a number of previous works attempt to analyze point clouds and achieve promising performances, their performances would degrade significantly when data variations like shift and scale changes are presented. In this paper, we propose 3D graph convolution networks (3D-GCN) , which uniquely learns 3D kernels with graph max-pooling mechanisms for extracting geometric features from point cloud data across different scales. We show that, with the proposed 3D-GCN, satisfactory shift and scale invariance can be jointly achieved. We show that 3D-GCN can be applied to point cloud classification and segmentation tasks, with ablation studies and visualizations verifying the design of 3D-GCN.
doi_str_mv 10.1109/TPAMI.2021.3059758
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2682919425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9355025</ieee_id><sourcerecordid>2490604265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a041d6d95a7cd2459d5acb7c9a9b35f47d38b3aefbfa001a245d2013a65557423</originalsourceid><addsrcrecordid>eNpdkLtOwzAUhi0EoqXwAiAhSywsKb4m8VgClEoFOpTZcmIHUtK42Amob49LSwemM5zvP5cPgHOMhhgjcTOfjZ4mQ4IIHlLERcLTA9DHgoqIcioOQR_hmERpStIeOPF-gRBmHNFj0KOUCyww7oPbqVGuqZo3aEtI7-DYqdU7zGzzZeuurWwDn037bd2Hh6V1cGarpoVZbTsNR42q177yp-CoVLU3Z7s6AK8P9_PsMZq-jCfZaBoVDKE2UohhHWvBVVJowrjQXBV5UgglcspLlmia5lSZMi9VuFQFRBOEqYo55wkjdACut3NXzn52xrdyWfnC1LVqjO28JEygGDES84Be_UMXtnPh3kDFKQm_M7KhyJYqnPXemVKuXLVUbi0xkhvD8tew3BiWO8MhdLkb3eVLo_eRP6UBuNgClTFm3xaUcxR2_gCPTX2L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682919425</pqid></control><display><type>article</type><title>Learning of 3D Graph Convolution Networks for Point Cloud Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Zhi-Hao ; Huang, Sheng-Yu ; Wang, Yu-Chiang Frank</creator><creatorcontrib>Lin, Zhi-Hao ; Huang, Sheng-Yu ; Wang, Yu-Chiang Frank</creatorcontrib><description>Point clouds are among the popular geometry representations in 3D vision. However, unlike 2D images with pixel-wise layouts, such representations containing unordered data points which make the processing and understanding the associated semantic information quite challenging. Although a number of previous works attempt to analyze point clouds and achieve promising performances, their performances would degrade significantly when data variations like shift and scale changes are presented. In this paper, we propose 3D graph convolution networks (3D-GCN) , which uniquely learns 3D kernels with graph max-pooling mechanisms for extracting geometric features from point cloud data across different scales. We show that, with the proposed 3D-GCN, satisfactory shift and scale invariance can be jointly achieved. We show that 3D-GCN can be applied to point cloud classification and segmentation tasks, with ablation studies and visualizations verifying the design of 3D-GCN.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2021.3059758</identifier><identifier>PMID: 33591911</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D classification ; 3D segmentation ; 3D vision ; Ablation ; Convolution ; Data points ; deformable kernels ; Feature extraction ; graph convolution networks ; Image segmentation ; Kernel ; point clouds ; Representations ; Scale invariance ; Shape ; Task analysis ; Three dimensional models ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-08, Vol.44 (8), p.4212-4224</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-a041d6d95a7cd2459d5acb7c9a9b35f47d38b3aefbfa001a245d2013a65557423</citedby><cites>FETCH-LOGICAL-c400t-a041d6d95a7cd2459d5acb7c9a9b35f47d38b3aefbfa001a245d2013a65557423</cites><orcidid>0000-0002-2333-157X ; 0000-0002-3149-9620 ; 0000-0002-4831-5488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9355025$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9355025$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33591911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Zhi-Hao</creatorcontrib><creatorcontrib>Huang, Sheng-Yu</creatorcontrib><creatorcontrib>Wang, Yu-Chiang Frank</creatorcontrib><title>Learning of 3D Graph Convolution Networks for Point Cloud Analysis</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Point clouds are among the popular geometry representations in 3D vision. However, unlike 2D images with pixel-wise layouts, such representations containing unordered data points which make the processing and understanding the associated semantic information quite challenging. Although a number of previous works attempt to analyze point clouds and achieve promising performances, their performances would degrade significantly when data variations like shift and scale changes are presented. In this paper, we propose 3D graph convolution networks (3D-GCN) , which uniquely learns 3D kernels with graph max-pooling mechanisms for extracting geometric features from point cloud data across different scales. We show that, with the proposed 3D-GCN, satisfactory shift and scale invariance can be jointly achieved. We show that 3D-GCN can be applied to point cloud classification and segmentation tasks, with ablation studies and visualizations verifying the design of 3D-GCN.</description><subject>3D classification</subject><subject>3D segmentation</subject><subject>3D vision</subject><subject>Ablation</subject><subject>Convolution</subject><subject>Data points</subject><subject>deformable kernels</subject><subject>Feature extraction</subject><subject>graph convolution networks</subject><subject>Image segmentation</subject><subject>Kernel</subject><subject>point clouds</subject><subject>Representations</subject><subject>Scale invariance</subject><subject>Shape</subject><subject>Task analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLtOwzAUhi0EoqXwAiAhSywsKb4m8VgClEoFOpTZcmIHUtK42Amob49LSwemM5zvP5cPgHOMhhgjcTOfjZ4mQ4IIHlLERcLTA9DHgoqIcioOQR_hmERpStIeOPF-gRBmHNFj0KOUCyww7oPbqVGuqZo3aEtI7-DYqdU7zGzzZeuurWwDn037bd2Hh6V1cGarpoVZbTsNR42q177yp-CoVLU3Z7s6AK8P9_PsMZq-jCfZaBoVDKE2UohhHWvBVVJowrjQXBV5UgglcspLlmia5lSZMi9VuFQFRBOEqYo55wkjdACut3NXzn52xrdyWfnC1LVqjO28JEygGDES84Be_UMXtnPh3kDFKQm_M7KhyJYqnPXemVKuXLVUbi0xkhvD8tew3BiWO8MhdLkb3eVLo_eRP6UBuNgClTFm3xaUcxR2_gCPTX2L</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Lin, Zhi-Hao</creator><creator>Huang, Sheng-Yu</creator><creator>Wang, Yu-Chiang Frank</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2333-157X</orcidid><orcidid>https://orcid.org/0000-0002-3149-9620</orcidid><orcidid>https://orcid.org/0000-0002-4831-5488</orcidid></search><sort><creationdate>20220801</creationdate><title>Learning of 3D Graph Convolution Networks for Point Cloud Analysis</title><author>Lin, Zhi-Hao ; Huang, Sheng-Yu ; Wang, Yu-Chiang Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a041d6d95a7cd2459d5acb7c9a9b35f47d38b3aefbfa001a245d2013a65557423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D classification</topic><topic>3D segmentation</topic><topic>3D vision</topic><topic>Ablation</topic><topic>Convolution</topic><topic>Data points</topic><topic>deformable kernels</topic><topic>Feature extraction</topic><topic>graph convolution networks</topic><topic>Image segmentation</topic><topic>Kernel</topic><topic>point clouds</topic><topic>Representations</topic><topic>Scale invariance</topic><topic>Shape</topic><topic>Task analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zhi-Hao</creatorcontrib><creatorcontrib>Huang, Sheng-Yu</creatorcontrib><creatorcontrib>Wang, Yu-Chiang Frank</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Zhi-Hao</au><au>Huang, Sheng-Yu</au><au>Wang, Yu-Chiang Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning of 3D Graph Convolution Networks for Point Cloud Analysis</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>44</volume><issue>8</issue><spage>4212</spage><epage>4224</epage><pages>4212-4224</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Point clouds are among the popular geometry representations in 3D vision. However, unlike 2D images with pixel-wise layouts, such representations containing unordered data points which make the processing and understanding the associated semantic information quite challenging. Although a number of previous works attempt to analyze point clouds and achieve promising performances, their performances would degrade significantly when data variations like shift and scale changes are presented. In this paper, we propose 3D graph convolution networks (3D-GCN) , which uniquely learns 3D kernels with graph max-pooling mechanisms for extracting geometric features from point cloud data across different scales. We show that, with the proposed 3D-GCN, satisfactory shift and scale invariance can be jointly achieved. We show that 3D-GCN can be applied to point cloud classification and segmentation tasks, with ablation studies and visualizations verifying the design of 3D-GCN.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33591911</pmid><doi>10.1109/TPAMI.2021.3059758</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2333-157X</orcidid><orcidid>https://orcid.org/0000-0002-3149-9620</orcidid><orcidid>https://orcid.org/0000-0002-4831-5488</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2022-08, Vol.44 (8), p.4212-4224
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_2682919425
source IEEE Electronic Library (IEL)
subjects 3D classification
3D segmentation
3D vision
Ablation
Convolution
Data points
deformable kernels
Feature extraction
graph convolution networks
Image segmentation
Kernel
point clouds
Representations
Scale invariance
Shape
Task analysis
Three dimensional models
Three-dimensional displays
Two dimensional displays
title Learning of 3D Graph Convolution Networks for Point Cloud Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20of%203D%20Graph%20Convolution%20Networks%20for%20Point%20Cloud%20Analysis&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Lin,%20Zhi-Hao&rft.date=2022-08-01&rft.volume=44&rft.issue=8&rft.spage=4212&rft.epage=4224&rft.pages=4212-4224&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3059758&rft_dat=%3Cproquest_RIE%3E2490604265%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682919425&rft_id=info:pmid/33591911&rft_ieee_id=9355025&rfr_iscdi=true