Analysis of Fractional Integro–Differential Equation with Robin Boundary Conditions Using Topological Degree Method
In this work, we investigate the existence results of the integro-differential equation with the Robin Boundary Condition (RBC). We establish some results to prove the existence using Topological Degree Theory (TDT). The analysis is to be explained with a suitable example. We observe that the use of...
Gespeichert in:
Veröffentlicht in: | International journal of applied and computational mathematics 2022-08, Vol.8 (4), Article 176 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | International journal of applied and computational mathematics |
container_volume | 8 |
creator | Kaliraj, K. Viswanath, K. S. Logeswari, K. Ravichandran, C. |
description | In this work, we investigate the existence results of the integro-differential equation with the Robin Boundary Condition (RBC). We establish some results to prove the existence using Topological Degree Theory (TDT). The analysis is to be explained with a suitable example. We observe that the use of fixed-point theory would require the imposition of stronger conditions. Hence, we make use of Topological Degree Theory, which requires comparatively weaker conditions. This showcases the wide range applicability of TDT in analysis of various problems. |
doi_str_mv | 10.1007/s40819-022-01379-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682819471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682819471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2341-2477bab0aff8dd8d9841e11d3595c6c0195ded09ed1485ec5f2e7aac830ac0073</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWLQv4CrgejTJzDTJsvZHCxVB2nVI8zNNqZM2mUG68x18Q5_EjCO4c3Uv955zuPcD4AajO4wQvY8FYphniJAM4ZzyDJ-BAcGcZyXlo_PU50XqMcovwTDGHUKI4IIiwgagHddyf4ouQm_hPEjVOJ8mcFE3pgr-6-Nz6qw1wdSNS-PZsZWdAr67Zgtf_cbV8MG3tZbhBCe-1q7bRriOrq7gyh_83ldOJec0xRkDn02z9foaXFi5j2b4W6_Aej5bTZ6y5cvjYjJeZiqdjDNSULqRGyStZVozzVmBDcY6L3mpRgphXmqjETcaF6w0qrTEUCkVy5FUiUx-BW773EPwx9bERux8G9J_UZARI4laQXFSkV6lgo8xGCsOwb2ljwRGoiMsesIiERY_hEVnyntTTOK6MuEv-h_XN1tFgMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682819471</pqid></control><display><type>article</type><title>Analysis of Fractional Integro–Differential Equation with Robin Boundary Conditions Using Topological Degree Method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kaliraj, K. ; Viswanath, K. S. ; Logeswari, K. ; Ravichandran, C.</creator><creatorcontrib>Kaliraj, K. ; Viswanath, K. S. ; Logeswari, K. ; Ravichandran, C.</creatorcontrib><description>In this work, we investigate the existence results of the integro-differential equation with the Robin Boundary Condition (RBC). We establish some results to prove the existence using Topological Degree Theory (TDT). The analysis is to be explained with a suitable example. We observe that the use of fixed-point theory would require the imposition of stronger conditions. Hence, we make use of Topological Degree Theory, which requires comparatively weaker conditions. This showcases the wide range applicability of TDT in analysis of various problems.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-022-01379-1</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Boundary conditions ; Computational mathematics ; Computational Science and Engineering ; Differential equations ; Differential thermal analysis ; Fixed points (mathematics) ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical ; Topology</subject><ispartof>International journal of applied and computational mathematics, 2022-08, Vol.8 (4), Article 176</ispartof><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2341-2477bab0aff8dd8d9841e11d3595c6c0195ded09ed1485ec5f2e7aac830ac0073</citedby><cites>FETCH-LOGICAL-c2341-2477bab0aff8dd8d9841e11d3595c6c0195ded09ed1485ec5f2e7aac830ac0073</cites><orcidid>0000-0003-0902-3842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-022-01379-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-022-01379-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kaliraj, K.</creatorcontrib><creatorcontrib>Viswanath, K. S.</creatorcontrib><creatorcontrib>Logeswari, K.</creatorcontrib><creatorcontrib>Ravichandran, C.</creatorcontrib><title>Analysis of Fractional Integro–Differential Equation with Robin Boundary Conditions Using Topological Degree Method</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>In this work, we investigate the existence results of the integro-differential equation with the Robin Boundary Condition (RBC). We establish some results to prove the existence using Topological Degree Theory (TDT). The analysis is to be explained with a suitable example. We observe that the use of fixed-point theory would require the imposition of stronger conditions. Hence, we make use of Topological Degree Theory, which requires comparatively weaker conditions. This showcases the wide range applicability of TDT in analysis of various problems.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Differential equations</subject><subject>Differential thermal analysis</subject><subject>Fixed points (mathematics)</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><subject>Topology</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWLQv4CrgejTJzDTJsvZHCxVB2nVI8zNNqZM2mUG68x18Q5_EjCO4c3Uv955zuPcD4AajO4wQvY8FYphniJAM4ZzyDJ-BAcGcZyXlo_PU50XqMcovwTDGHUKI4IIiwgagHddyf4ouQm_hPEjVOJ8mcFE3pgr-6-Nz6qw1wdSNS-PZsZWdAr67Zgtf_cbV8MG3tZbhBCe-1q7bRriOrq7gyh_83ldOJec0xRkDn02z9foaXFi5j2b4W6_Aej5bTZ6y5cvjYjJeZiqdjDNSULqRGyStZVozzVmBDcY6L3mpRgphXmqjETcaF6w0qrTEUCkVy5FUiUx-BW773EPwx9bERux8G9J_UZARI4laQXFSkV6lgo8xGCsOwb2ljwRGoiMsesIiERY_hEVnyntTTOK6MuEv-h_XN1tFgMk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kaliraj, K.</creator><creator>Viswanath, K. S.</creator><creator>Logeswari, K.</creator><creator>Ravichandran, C.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0902-3842</orcidid></search><sort><creationdate>20220801</creationdate><title>Analysis of Fractional Integro–Differential Equation with Robin Boundary Conditions Using Topological Degree Method</title><author>Kaliraj, K. ; Viswanath, K. S. ; Logeswari, K. ; Ravichandran, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2341-2477bab0aff8dd8d9841e11d3595c6c0195ded09ed1485ec5f2e7aac830ac0073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Differential equations</topic><topic>Differential thermal analysis</topic><topic>Fixed points (mathematics)</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaliraj, K.</creatorcontrib><creatorcontrib>Viswanath, K. S.</creatorcontrib><creatorcontrib>Logeswari, K.</creatorcontrib><creatorcontrib>Ravichandran, C.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaliraj, K.</au><au>Viswanath, K. S.</au><au>Logeswari, K.</au><au>Ravichandran, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Fractional Integro–Differential Equation with Robin Boundary Conditions Using Topological Degree Method</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>8</volume><issue>4</issue><artnum>176</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>In this work, we investigate the existence results of the integro-differential equation with the Robin Boundary Condition (RBC). We establish some results to prove the existence using Topological Degree Theory (TDT). The analysis is to be explained with a suitable example. We observe that the use of fixed-point theory would require the imposition of stronger conditions. Hence, we make use of Topological Degree Theory, which requires comparatively weaker conditions. This showcases the wide range applicability of TDT in analysis of various problems.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-022-01379-1</doi><orcidid>https://orcid.org/0000-0003-0902-3842</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2349-5103 |
ispartof | International journal of applied and computational mathematics, 2022-08, Vol.8 (4), Article 176 |
issn | 2349-5103 2199-5796 |
language | eng |
recordid | cdi_proquest_journals_2682819471 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Applied mathematics Boundary conditions Computational mathematics Computational Science and Engineering Differential equations Differential thermal analysis Fixed points (mathematics) Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Original Paper Theoretical Topology |
title | Analysis of Fractional Integro–Differential Equation with Robin Boundary Conditions Using Topological Degree Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Fractional%20Integro%E2%80%93Differential%20Equation%20with%20Robin%20Boundary%20Conditions%20Using%20Topological%20Degree%20Method&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Kaliraj,%20K.&rft.date=2022-08-01&rft.volume=8&rft.issue=4&rft.artnum=176&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-022-01379-1&rft_dat=%3Cproquest_cross%3E2682819471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682819471&rft_id=info:pmid/&rfr_iscdi=true |