Analysis of Fractional Integro–Differential Equation with Robin Boundary Conditions Using Topological Degree Method

In this work, we investigate the existence results of the integro-differential equation with the Robin Boundary Condition (RBC). We establish some results to prove the existence using Topological Degree Theory (TDT). The analysis is to be explained with a suitable example. We observe that the use of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and computational mathematics 2022-08, Vol.8 (4), Article 176
Hauptverfasser: Kaliraj, K., Viswanath, K. S., Logeswari, K., Ravichandran, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title International journal of applied and computational mathematics
container_volume 8
creator Kaliraj, K.
Viswanath, K. S.
Logeswari, K.
Ravichandran, C.
description In this work, we investigate the existence results of the integro-differential equation with the Robin Boundary Condition (RBC). We establish some results to prove the existence using Topological Degree Theory (TDT). The analysis is to be explained with a suitable example. We observe that the use of fixed-point theory would require the imposition of stronger conditions. Hence, we make use of Topological Degree Theory, which requires comparatively weaker conditions. This showcases the wide range applicability of TDT in analysis of various problems.
doi_str_mv 10.1007/s40819-022-01379-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682819471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682819471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2341-2477bab0aff8dd8d9841e11d3595c6c0195ded09ed1485ec5f2e7aac830ac0073</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWLQv4CrgejTJzDTJsvZHCxVB2nVI8zNNqZM2mUG68x18Q5_EjCO4c3Uv955zuPcD4AajO4wQvY8FYphniJAM4ZzyDJ-BAcGcZyXlo_PU50XqMcovwTDGHUKI4IIiwgagHddyf4ouQm_hPEjVOJ8mcFE3pgr-6-Nz6qw1wdSNS-PZsZWdAr67Zgtf_cbV8MG3tZbhBCe-1q7bRriOrq7gyh_83ldOJec0xRkDn02z9foaXFi5j2b4W6_Aej5bTZ6y5cvjYjJeZiqdjDNSULqRGyStZVozzVmBDcY6L3mpRgphXmqjETcaF6w0qrTEUCkVy5FUiUx-BW773EPwx9bERux8G9J_UZARI4laQXFSkV6lgo8xGCsOwb2ljwRGoiMsesIiERY_hEVnyntTTOK6MuEv-h_XN1tFgMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682819471</pqid></control><display><type>article</type><title>Analysis of Fractional Integro–Differential Equation with Robin Boundary Conditions Using Topological Degree Method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kaliraj, K. ; Viswanath, K. S. ; Logeswari, K. ; Ravichandran, C.</creator><creatorcontrib>Kaliraj, K. ; Viswanath, K. S. ; Logeswari, K. ; Ravichandran, C.</creatorcontrib><description>In this work, we investigate the existence results of the integro-differential equation with the Robin Boundary Condition (RBC). We establish some results to prove the existence using Topological Degree Theory (TDT). The analysis is to be explained with a suitable example. We observe that the use of fixed-point theory would require the imposition of stronger conditions. Hence, we make use of Topological Degree Theory, which requires comparatively weaker conditions. This showcases the wide range applicability of TDT in analysis of various problems.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-022-01379-1</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Boundary conditions ; Computational mathematics ; Computational Science and Engineering ; Differential equations ; Differential thermal analysis ; Fixed points (mathematics) ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Theoretical ; Topology</subject><ispartof>International journal of applied and computational mathematics, 2022-08, Vol.8 (4), Article 176</ispartof><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2341-2477bab0aff8dd8d9841e11d3595c6c0195ded09ed1485ec5f2e7aac830ac0073</citedby><cites>FETCH-LOGICAL-c2341-2477bab0aff8dd8d9841e11d3595c6c0195ded09ed1485ec5f2e7aac830ac0073</cites><orcidid>0000-0003-0902-3842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-022-01379-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-022-01379-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kaliraj, K.</creatorcontrib><creatorcontrib>Viswanath, K. S.</creatorcontrib><creatorcontrib>Logeswari, K.</creatorcontrib><creatorcontrib>Ravichandran, C.</creatorcontrib><title>Analysis of Fractional Integro–Differential Equation with Robin Boundary Conditions Using Topological Degree Method</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>In this work, we investigate the existence results of the integro-differential equation with the Robin Boundary Condition (RBC). We establish some results to prove the existence using Topological Degree Theory (TDT). The analysis is to be explained with a suitable example. We observe that the use of fixed-point theory would require the imposition of stronger conditions. Hence, we make use of Topological Degree Theory, which requires comparatively weaker conditions. This showcases the wide range applicability of TDT in analysis of various problems.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Differential equations</subject><subject>Differential thermal analysis</subject><subject>Fixed points (mathematics)</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Theoretical</subject><subject>Topology</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWLQv4CrgejTJzDTJsvZHCxVB2nVI8zNNqZM2mUG68x18Q5_EjCO4c3Uv955zuPcD4AajO4wQvY8FYphniJAM4ZzyDJ-BAcGcZyXlo_PU50XqMcovwTDGHUKI4IIiwgagHddyf4ouQm_hPEjVOJ8mcFE3pgr-6-Nz6qw1wdSNS-PZsZWdAr67Zgtf_cbV8MG3tZbhBCe-1q7bRriOrq7gyh_83ldOJec0xRkDn02z9foaXFi5j2b4W6_Aej5bTZ6y5cvjYjJeZiqdjDNSULqRGyStZVozzVmBDcY6L3mpRgphXmqjETcaF6w0qrTEUCkVy5FUiUx-BW773EPwx9bERux8G9J_UZARI4laQXFSkV6lgo8xGCsOwb2ljwRGoiMsesIiERY_hEVnyntTTOK6MuEv-h_XN1tFgMk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kaliraj, K.</creator><creator>Viswanath, K. S.</creator><creator>Logeswari, K.</creator><creator>Ravichandran, C.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0902-3842</orcidid></search><sort><creationdate>20220801</creationdate><title>Analysis of Fractional Integro–Differential Equation with Robin Boundary Conditions Using Topological Degree Method</title><author>Kaliraj, K. ; Viswanath, K. S. ; Logeswari, K. ; Ravichandran, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2341-2477bab0aff8dd8d9841e11d3595c6c0195ded09ed1485ec5f2e7aac830ac0073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Differential equations</topic><topic>Differential thermal analysis</topic><topic>Fixed points (mathematics)</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaliraj, K.</creatorcontrib><creatorcontrib>Viswanath, K. S.</creatorcontrib><creatorcontrib>Logeswari, K.</creatorcontrib><creatorcontrib>Ravichandran, C.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaliraj, K.</au><au>Viswanath, K. S.</au><au>Logeswari, K.</au><au>Ravichandran, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Fractional Integro–Differential Equation with Robin Boundary Conditions Using Topological Degree Method</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>8</volume><issue>4</issue><artnum>176</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>In this work, we investigate the existence results of the integro-differential equation with the Robin Boundary Condition (RBC). We establish some results to prove the existence using Topological Degree Theory (TDT). The analysis is to be explained with a suitable example. We observe that the use of fixed-point theory would require the imposition of stronger conditions. Hence, we make use of Topological Degree Theory, which requires comparatively weaker conditions. This showcases the wide range applicability of TDT in analysis of various problems.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-022-01379-1</doi><orcidid>https://orcid.org/0000-0003-0902-3842</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2349-5103
ispartof International journal of applied and computational mathematics, 2022-08, Vol.8 (4), Article 176
issn 2349-5103
2199-5796
language eng
recordid cdi_proquest_journals_2682819471
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Applied mathematics
Boundary conditions
Computational mathematics
Computational Science and Engineering
Differential equations
Differential thermal analysis
Fixed points (mathematics)
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Theoretical
Topology
title Analysis of Fractional Integro–Differential Equation with Robin Boundary Conditions Using Topological Degree Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Fractional%20Integro%E2%80%93Differential%20Equation%20with%20Robin%20Boundary%20Conditions%20Using%20Topological%20Degree%20Method&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Kaliraj,%20K.&rft.date=2022-08-01&rft.volume=8&rft.issue=4&rft.artnum=176&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-022-01379-1&rft_dat=%3Cproquest_cross%3E2682819471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682819471&rft_id=info:pmid/&rfr_iscdi=true