A retrieval model family based on the probability ranking principle for ad hoc retrieval

Many successful retrieval models are derived based on or conform to the probability ranking principle (PRP). We present a new derivation of a document ranking function given by the probability of relevance of a document, conforming to the PRP. Our formulation yields a family of retrieval models, cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Information Science and Technology 2022-08, Vol.73 (8), p.1140-1154
Hauptverfasser: Dang, Edward Kai Fung, Luk, Robert Wing Pong, Allan, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1154
container_issue 8
container_start_page 1140
container_title Journal of the American Society for Information Science and Technology
container_volume 73
creator Dang, Edward Kai Fung
Luk, Robert Wing Pong
Allan, James
description Many successful retrieval models are derived based on or conform to the probability ranking principle (PRP). We present a new derivation of a document ranking function given by the probability of relevance of a document, conforming to the PRP. Our formulation yields a family of retrieval models, called probabilistic binary relevance (PBR) models, with various instantiations obtained by different probability estimations. By extensive experiments on a range of TREC collections, improvement of the PBR models over some established baselines with statistical significance is observed, especially in the large Clueweb09 Cat‐B collection.
doi_str_mv 10.1002/asi.24619
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682768998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682768998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2579-48cccaed66f3937b005fd3ceafec76e983bd950fbd11954331ca272fe618b2333</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EElXpgj-wxIpFqB-JEy-rikelSiwAiZ3lOGPqksbFTkH5ewxBsGI1o9GZO3cuQueUXFFC2FxHd8VyQeURmjDOSUZFzo9_e16colmMW0IIJbIqGJ2g5wUO0AcH77rFO99Ai63euXbAtY7QYN_hfgN4H3yta9e6fsBBd6-ue0kz1xm3bwFbH7Bu8MabP7EzdGJ1G2H2U6fo6eb6cXmXre9vV8vFOjOsKGWWV8YYDY0Qlkte1oQUtuEGtAVTCpAVrxtZEFs3lMoi55wazUpmQdCqTn_xKboYdZPFtwPEXm39IXTppGKiYqWoZBKZosuRMsHHGMCq5H6nw6AoUV_ZqZSd-s4usfOR_XAtDP-DavGwGjc-AWzscFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682768998</pqid></control><display><type>article</type><title>A retrieval model family based on the probability ranking principle for ad hoc retrieval</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Dang, Edward Kai Fung ; Luk, Robert Wing Pong ; Allan, James</creator><creatorcontrib>Dang, Edward Kai Fung ; Luk, Robert Wing Pong ; Allan, James</creatorcontrib><description>Many successful retrieval models are derived based on or conform to the probability ranking principle (PRP). We present a new derivation of a document ranking function given by the probability of relevance of a document, conforming to the PRP. Our formulation yields a family of retrieval models, called probabilistic binary relevance (PBR) models, with various instantiations obtained by different probability estimations. By extensive experiments on a range of TREC collections, improvement of the PBR models over some established baselines with statistical significance is observed, especially in the large Clueweb09 Cat‐B collection.</description><identifier>ISSN: 2330-1635</identifier><identifier>EISSN: 2330-1643</identifier><identifier>DOI: 10.1002/asi.24619</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Documents ; Families &amp; family life ; Principles ; Ranking ; Retrieval ; Statistical analysis</subject><ispartof>Journal of the American Society for Information Science and Technology, 2022-08, Vol.73 (8), p.1140-1154</ispartof><rights>2022 Association for Information Science and Technology.</rights><rights>2022 Association for Information Science and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2579-48cccaed66f3937b005fd3ceafec76e983bd950fbd11954331ca272fe618b2333</cites><orcidid>0000-0002-4917-7216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasi.24619$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasi.24619$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dang, Edward Kai Fung</creatorcontrib><creatorcontrib>Luk, Robert Wing Pong</creatorcontrib><creatorcontrib>Allan, James</creatorcontrib><title>A retrieval model family based on the probability ranking principle for ad hoc retrieval</title><title>Journal of the American Society for Information Science and Technology</title><description>Many successful retrieval models are derived based on or conform to the probability ranking principle (PRP). We present a new derivation of a document ranking function given by the probability of relevance of a document, conforming to the PRP. Our formulation yields a family of retrieval models, called probabilistic binary relevance (PBR) models, with various instantiations obtained by different probability estimations. By extensive experiments on a range of TREC collections, improvement of the PBR models over some established baselines with statistical significance is observed, especially in the large Clueweb09 Cat‐B collection.</description><subject>Documents</subject><subject>Families &amp; family life</subject><subject>Principles</subject><subject>Ranking</subject><subject>Retrieval</subject><subject>Statistical analysis</subject><issn>2330-1635</issn><issn>2330-1643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EElXpgj-wxIpFqB-JEy-rikelSiwAiZ3lOGPqksbFTkH5ewxBsGI1o9GZO3cuQueUXFFC2FxHd8VyQeURmjDOSUZFzo9_e16colmMW0IIJbIqGJ2g5wUO0AcH77rFO99Ai63euXbAtY7QYN_hfgN4H3yta9e6fsBBd6-ue0kz1xm3bwFbH7Bu8MabP7EzdGJ1G2H2U6fo6eb6cXmXre9vV8vFOjOsKGWWV8YYDY0Qlkte1oQUtuEGtAVTCpAVrxtZEFs3lMoi55wazUpmQdCqTn_xKboYdZPFtwPEXm39IXTppGKiYqWoZBKZosuRMsHHGMCq5H6nw6AoUV_ZqZSd-s4usfOR_XAtDP-DavGwGjc-AWzscFg</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Dang, Edward Kai Fung</creator><creator>Luk, Robert Wing Pong</creator><creator>Allan, James</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4917-7216</orcidid></search><sort><creationdate>202208</creationdate><title>A retrieval model family based on the probability ranking principle for ad hoc retrieval</title><author>Dang, Edward Kai Fung ; Luk, Robert Wing Pong ; Allan, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2579-48cccaed66f3937b005fd3ceafec76e983bd950fbd11954331ca272fe618b2333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Documents</topic><topic>Families &amp; family life</topic><topic>Principles</topic><topic>Ranking</topic><topic>Retrieval</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Edward Kai Fung</creatorcontrib><creatorcontrib>Luk, Robert Wing Pong</creatorcontrib><creatorcontrib>Allan, James</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the American Society for Information Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Edward Kai Fung</au><au>Luk, Robert Wing Pong</au><au>Allan, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A retrieval model family based on the probability ranking principle for ad hoc retrieval</atitle><jtitle>Journal of the American Society for Information Science and Technology</jtitle><date>2022-08</date><risdate>2022</risdate><volume>73</volume><issue>8</issue><spage>1140</spage><epage>1154</epage><pages>1140-1154</pages><issn>2330-1635</issn><eissn>2330-1643</eissn><abstract>Many successful retrieval models are derived based on or conform to the probability ranking principle (PRP). We present a new derivation of a document ranking function given by the probability of relevance of a document, conforming to the PRP. Our formulation yields a family of retrieval models, called probabilistic binary relevance (PBR) models, with various instantiations obtained by different probability estimations. By extensive experiments on a range of TREC collections, improvement of the PBR models over some established baselines with statistical significance is observed, especially in the large Clueweb09 Cat‐B collection.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/asi.24619</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4917-7216</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2330-1635
ispartof Journal of the American Society for Information Science and Technology, 2022-08, Vol.73 (8), p.1140-1154
issn 2330-1635
2330-1643
language eng
recordid cdi_proquest_journals_2682768998
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Documents
Families & family life
Principles
Ranking
Retrieval
Statistical analysis
title A retrieval model family based on the probability ranking principle for ad hoc retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20retrieval%20model%20family%20based%20on%20the%20probability%20ranking%20principle%20for%20ad%20hoc%20retrieval&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Information%20Science%20and%20Technology&rft.au=Dang,%20Edward%20Kai%20Fung&rft.date=2022-08&rft.volume=73&rft.issue=8&rft.spage=1140&rft.epage=1154&rft.pages=1140-1154&rft.issn=2330-1635&rft.eissn=2330-1643&rft_id=info:doi/10.1002/asi.24619&rft_dat=%3Cproquest_cross%3E2682768998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682768998&rft_id=info:pmid/&rfr_iscdi=true