Score Matching for Truncated Density Estimation on a Manifold

When observations are truncated, we are limited to an incomplete picture of our dataset. Recent methods propose to use score matching for truncated density estimation, where the access to the intractable normalising constant is not required. We present a novel extension of truncated score matching t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Williams, Daniel J, Liu, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Williams, Daniel J
Liu, Song
description When observations are truncated, we are limited to an incomplete picture of our dataset. Recent methods propose to use score matching for truncated density estimation, where the access to the intractable normalising constant is not required. We present a novel extension of truncated score matching to a Riemannian manifold with boundary. Applications are presented for the von Mises-Fisher and Kent distributions on a two dimensional sphere in \(\mathbb{R}^3\), as well as a real-world application of extreme storm observations in the USA. In simulated data experiments, our score matching estimator is able to approximate the true parameter values with a low estimation error and shows improvements over a naive maximum likelihood estimator.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2682584637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682584637</sourcerecordid><originalsourceid>FETCH-proquest_journals_26825846373</originalsourceid><addsrcrecordid>eNqNikELwiAYQCUIGrX_IHQe2Od0XjrVokundh_idDmWlrpD_z4P_YDgwTu8t0IFUHqoRA2wQWWMEyEEeAOM0QId78oHjW8yqYd1IzY-4C4sTsmkB3zWLtr0wW1M9imT9Q5nZN6dNX4edmht5Bx1-fMW7S9td7pWr-Dfi46pn_wSXE49cAFM1Jw29L_rC1EAN6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682584637</pqid></control><display><type>article</type><title>Score Matching for Truncated Density Estimation on a Manifold</title><source>Free E- Journals</source><creator>Williams, Daniel J ; Liu, Song</creator><creatorcontrib>Williams, Daniel J ; Liu, Song</creatorcontrib><description>When observations are truncated, we are limited to an incomplete picture of our dataset. Recent methods propose to use score matching for truncated density estimation, where the access to the intractable normalising constant is not required. We present a novel extension of truncated score matching to a Riemannian manifold with boundary. Applications are presented for the von Mises-Fisher and Kent distributions on a two dimensional sphere in \(\mathbb{R}^3\), as well as a real-world application of extreme storm observations in the USA. In simulated data experiments, our score matching estimator is able to approximate the true parameter values with a low estimation error and shows improvements over a naive maximum likelihood estimator.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Density ; Matching ; Maximum likelihood estimators ; Riemann manifold</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Williams, Daniel J</creatorcontrib><creatorcontrib>Liu, Song</creatorcontrib><title>Score Matching for Truncated Density Estimation on a Manifold</title><title>arXiv.org</title><description>When observations are truncated, we are limited to an incomplete picture of our dataset. Recent methods propose to use score matching for truncated density estimation, where the access to the intractable normalising constant is not required. We present a novel extension of truncated score matching to a Riemannian manifold with boundary. Applications are presented for the von Mises-Fisher and Kent distributions on a two dimensional sphere in \(\mathbb{R}^3\), as well as a real-world application of extreme storm observations in the USA. In simulated data experiments, our score matching estimator is able to approximate the true parameter values with a low estimation error and shows improvements over a naive maximum likelihood estimator.</description><subject>Density</subject><subject>Matching</subject><subject>Maximum likelihood estimators</subject><subject>Riemann manifold</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikELwiAYQCUIGrX_IHQe2Od0XjrVokundh_idDmWlrpD_z4P_YDgwTu8t0IFUHqoRA2wQWWMEyEEeAOM0QId78oHjW8yqYd1IzY-4C4sTsmkB3zWLtr0wW1M9imT9Q5nZN6dNX4edmht5Bx1-fMW7S9td7pWr-Dfi46pn_wSXE49cAFM1Jw29L_rC1EAN6U</recordid><startdate>20240412</startdate><enddate>20240412</enddate><creator>Williams, Daniel J</creator><creator>Liu, Song</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240412</creationdate><title>Score Matching for Truncated Density Estimation on a Manifold</title><author>Williams, Daniel J ; Liu, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26825846373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density</topic><topic>Matching</topic><topic>Maximum likelihood estimators</topic><topic>Riemann manifold</topic><toplevel>online_resources</toplevel><creatorcontrib>Williams, Daniel J</creatorcontrib><creatorcontrib>Liu, Song</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Daniel J</au><au>Liu, Song</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Score Matching for Truncated Density Estimation on a Manifold</atitle><jtitle>arXiv.org</jtitle><date>2024-04-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>When observations are truncated, we are limited to an incomplete picture of our dataset. Recent methods propose to use score matching for truncated density estimation, where the access to the intractable normalising constant is not required. We present a novel extension of truncated score matching to a Riemannian manifold with boundary. Applications are presented for the von Mises-Fisher and Kent distributions on a two dimensional sphere in \(\mathbb{R}^3\), as well as a real-world application of extreme storm observations in the USA. In simulated data experiments, our score matching estimator is able to approximate the true parameter values with a low estimation error and shows improvements over a naive maximum likelihood estimator.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2682584637
source Free E- Journals
subjects Density
Matching
Maximum likelihood estimators
Riemann manifold
title Score Matching for Truncated Density Estimation on a Manifold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Score%20Matching%20for%20Truncated%20Density%20Estimation%20on%20a%20Manifold&rft.jtitle=arXiv.org&rft.au=Williams,%20Daniel%20J&rft.date=2024-04-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2682584637%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682584637&rft_id=info:pmid/&rfr_iscdi=true