Controlling properties of metal–polymer soft magnetic composites through microstructural deformation for power inductor applications

We studied the effect of microstructural deformation on soft magnetic metal powders in a power inductor operating above 1 MHz. In this study, an inductor core was fabricated using Fe-6.5Si powders that exhibit a high electrical resistance and a large magnetic saturation value. This core was formed w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2022-07, Vol.33 (19), p.15763-15772
Hauptverfasser: Lee, Min Young, Choi, Yeon Jun, Lee, Seok Hee, Ahn, Ji Hun, Lee, Bo Wha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15772
container_issue 19
container_start_page 15763
container_title Journal of materials science. Materials in electronics
container_volume 33
creator Lee, Min Young
Choi, Yeon Jun
Lee, Seok Hee
Ahn, Ji Hun
Lee, Bo Wha
description We studied the effect of microstructural deformation on soft magnetic metal powders in a power inductor operating above 1 MHz. In this study, an inductor core was fabricated using Fe-6.5Si powders that exhibit a high electrical resistance and a large magnetic saturation value. This core was formed with a high-density microstructure using nano Fe powders synthesized via pulsed wire evaporation. The permeability was maximized at the content ratio for which the maximum density and packing fraction were observed according to the relationship between permeability and packing fraction outlined in Ollendorff’s equation. Experimentally, the highest packing fraction and permeability were observed in the core containing 20 wt% nano Fe powder. Further, the sample with the highest packing fraction showed a relatively low core loss, compared to the other samples. Thus, the inductor core is affected by the intrinsic properties and microstructure of the soft magnetic material used.
doi_str_mv 10.1007/s10854-022-08478-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682578707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682578707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-681a300c7feaa81b4cf98a3e66e471c5579b0dbd8dfda9e4380938290acd52383</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuA6-hN-pN0KYN_MOBGwV3IpOlMhrapSYrMzpUv4Bv6JGas4M7VzSXfOZdzEDqncEkB-FWgIIqcAGMERM4FoQdoRguekVywl0M0g6rgJC8YO0YnIWwBoMwzMUMfC9dH79rW9ms8eDcYH60J2DW4M1G1X--fg2t3nfE4uCbiTq17E63G2nWDCzYmNm68G9cb3FntXYh-1HH0qsW1aZzvVLSux-mFB_eWbGxfJyCtahhaq3--wyk6alQbzNnvnKPn25unxT1ZPt49LK6XRLO8iqQUVGUAmjdGKUFXuW4qoTJTlibnVBcFr1ZQr2pRN7WqTEoIVSZYBUrXBctENkcXk2-K-jqaEOXWjb5PJyUrBSu44MATxSZqnyd408jB2075naQg933LqW-Z-pY_fUuaRNkkCgnu18b_Wf-j-gbnxIk7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682578707</pqid></control><display><type>article</type><title>Controlling properties of metal–polymer soft magnetic composites through microstructural deformation for power inductor applications</title><source>SpringerNature Journals</source><creator>Lee, Min Young ; Choi, Yeon Jun ; Lee, Seok Hee ; Ahn, Ji Hun ; Lee, Bo Wha</creator><creatorcontrib>Lee, Min Young ; Choi, Yeon Jun ; Lee, Seok Hee ; Ahn, Ji Hun ; Lee, Bo Wha</creatorcontrib><description>We studied the effect of microstructural deformation on soft magnetic metal powders in a power inductor operating above 1 MHz. In this study, an inductor core was fabricated using Fe-6.5Si powders that exhibit a high electrical resistance and a large magnetic saturation value. This core was formed with a high-density microstructure using nano Fe powders synthesized via pulsed wire evaporation. The permeability was maximized at the content ratio for which the maximum density and packing fraction were observed according to the relationship between permeability and packing fraction outlined in Ollendorff’s equation. Experimentally, the highest packing fraction and permeability were observed in the core containing 20 wt% nano Fe powder. Further, the sample with the highest packing fraction showed a relatively low core loss, compared to the other samples. Thus, the inductor core is affected by the intrinsic properties and microstructure of the soft magnetic material used.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-022-08478-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Binding energy ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Core loss ; Deformation ; Deformation effects ; Density ; Magnetic materials ; Magnetic properties ; Magnetic saturation ; Materials Science ; Metal powders ; Microstructure ; Optical and Electronic Materials ; Particle size ; Permeability ; Polymer matrix composites ; Silicon</subject><ispartof>Journal of materials science. Materials in electronics, 2022-07, Vol.33 (19), p.15763-15772</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-681a300c7feaa81b4cf98a3e66e471c5579b0dbd8dfda9e4380938290acd52383</citedby><cites>FETCH-LOGICAL-c249t-681a300c7feaa81b4cf98a3e66e471c5579b0dbd8dfda9e4380938290acd52383</cites><orcidid>0000-0001-7424-425X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-022-08478-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-022-08478-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lee, Min Young</creatorcontrib><creatorcontrib>Choi, Yeon Jun</creatorcontrib><creatorcontrib>Lee, Seok Hee</creatorcontrib><creatorcontrib>Ahn, Ji Hun</creatorcontrib><creatorcontrib>Lee, Bo Wha</creatorcontrib><title>Controlling properties of metal–polymer soft magnetic composites through microstructural deformation for power inductor applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>We studied the effect of microstructural deformation on soft magnetic metal powders in a power inductor operating above 1 MHz. In this study, an inductor core was fabricated using Fe-6.5Si powders that exhibit a high electrical resistance and a large magnetic saturation value. This core was formed with a high-density microstructure using nano Fe powders synthesized via pulsed wire evaporation. The permeability was maximized at the content ratio for which the maximum density and packing fraction were observed according to the relationship between permeability and packing fraction outlined in Ollendorff’s equation. Experimentally, the highest packing fraction and permeability were observed in the core containing 20 wt% nano Fe powder. Further, the sample with the highest packing fraction showed a relatively low core loss, compared to the other samples. Thus, the inductor core is affected by the intrinsic properties and microstructure of the soft magnetic material used.</description><subject>Alloys</subject><subject>Binding energy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Core loss</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Density</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Materials Science</subject><subject>Metal powders</subject><subject>Microstructure</subject><subject>Optical and Electronic Materials</subject><subject>Particle size</subject><subject>Permeability</subject><subject>Polymer matrix composites</subject><subject>Silicon</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KxDAUhYMoOI6-gKuA6-hN-pN0KYN_MOBGwV3IpOlMhrapSYrMzpUv4Bv6JGas4M7VzSXfOZdzEDqncEkB-FWgIIqcAGMERM4FoQdoRguekVywl0M0g6rgJC8YO0YnIWwBoMwzMUMfC9dH79rW9ms8eDcYH60J2DW4M1G1X--fg2t3nfE4uCbiTq17E63G2nWDCzYmNm68G9cb3FntXYh-1HH0qsW1aZzvVLSux-mFB_eWbGxfJyCtahhaq3--wyk6alQbzNnvnKPn25unxT1ZPt49LK6XRLO8iqQUVGUAmjdGKUFXuW4qoTJTlibnVBcFr1ZQr2pRN7WqTEoIVSZYBUrXBctENkcXk2-K-jqaEOXWjb5PJyUrBSu44MATxSZqnyd408jB2075naQg933LqW-Z-pY_fUuaRNkkCgnu18b_Wf-j-gbnxIk7</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Lee, Min Young</creator><creator>Choi, Yeon Jun</creator><creator>Lee, Seok Hee</creator><creator>Ahn, Ji Hun</creator><creator>Lee, Bo Wha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-7424-425X</orcidid></search><sort><creationdate>20220701</creationdate><title>Controlling properties of metal–polymer soft magnetic composites through microstructural deformation for power inductor applications</title><author>Lee, Min Young ; Choi, Yeon Jun ; Lee, Seok Hee ; Ahn, Ji Hun ; Lee, Bo Wha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-681a300c7feaa81b4cf98a3e66e471c5579b0dbd8dfda9e4380938290acd52383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Binding energy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Core loss</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Density</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Materials Science</topic><topic>Metal powders</topic><topic>Microstructure</topic><topic>Optical and Electronic Materials</topic><topic>Particle size</topic><topic>Permeability</topic><topic>Polymer matrix composites</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Min Young</creatorcontrib><creatorcontrib>Choi, Yeon Jun</creatorcontrib><creatorcontrib>Lee, Seok Hee</creatorcontrib><creatorcontrib>Ahn, Ji Hun</creatorcontrib><creatorcontrib>Lee, Bo Wha</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Min Young</au><au>Choi, Yeon Jun</au><au>Lee, Seok Hee</au><au>Ahn, Ji Hun</au><au>Lee, Bo Wha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling properties of metal–polymer soft magnetic composites through microstructural deformation for power inductor applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>33</volume><issue>19</issue><spage>15763</spage><epage>15772</epage><pages>15763-15772</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>We studied the effect of microstructural deformation on soft magnetic metal powders in a power inductor operating above 1 MHz. In this study, an inductor core was fabricated using Fe-6.5Si powders that exhibit a high electrical resistance and a large magnetic saturation value. This core was formed with a high-density microstructure using nano Fe powders synthesized via pulsed wire evaporation. The permeability was maximized at the content ratio for which the maximum density and packing fraction were observed according to the relationship between permeability and packing fraction outlined in Ollendorff’s equation. Experimentally, the highest packing fraction and permeability were observed in the core containing 20 wt% nano Fe powder. Further, the sample with the highest packing fraction showed a relatively low core loss, compared to the other samples. Thus, the inductor core is affected by the intrinsic properties and microstructure of the soft magnetic material used.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-022-08478-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7424-425X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2022-07, Vol.33 (19), p.15763-15772
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2682578707
source SpringerNature Journals
subjects Alloys
Binding energy
Characterization and Evaluation of Materials
Chemistry and Materials Science
Core loss
Deformation
Deformation effects
Density
Magnetic materials
Magnetic properties
Magnetic saturation
Materials Science
Metal powders
Microstructure
Optical and Electronic Materials
Particle size
Permeability
Polymer matrix composites
Silicon
title Controlling properties of metal–polymer soft magnetic composites through microstructural deformation for power inductor applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20properties%20of%20metal%E2%80%93polymer%20soft%20magnetic%20composites%20through%20microstructural%20deformation%20for%20power%20inductor%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Lee,%20Min%20Young&rft.date=2022-07-01&rft.volume=33&rft.issue=19&rft.spage=15763&rft.epage=15772&rft.pages=15763-15772&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-022-08478-1&rft_dat=%3Cproquest_cross%3E2682578707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682578707&rft_id=info:pmid/&rfr_iscdi=true