RETRACTED ARTICLE: Fingerprint classification system using CNN
Most solitary finger impression check and acknowledgment frameworks / methods are based on the minutiae feature points. Feature Extraction is a fundamental advance in solitary finger impression based acknowledgment frameworks. In this paper, a CNN based finger impression affirmation strategy is prop...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2022-07, Vol.81 (17), p.24515-24527 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24527 |
---|---|
container_issue | 17 |
container_start_page | 24515 |
container_title | Multimedia tools and applications |
container_volume | 81 |
creator | Nahar, Prateek Chaudhari, N. S. Tanwani, S. K. |
description | Most solitary finger impression check and acknowledgment frameworks / methods are based on the minutiae feature points. Feature Extraction is a fundamental advance in solitary finger impression based acknowledgment frameworks. In this paper, a CNN based finger impression affirmation strategy is proposed without preprocessing an image. The framework fuses two phases include extraction and coordinating. Feature elicitation is realized by different filters with different parameter set; matching juncture relates extracted features and creates a corresponding score. Recognition attainment of the preferred system has been tested by utilizingFVC2004 database. The inference is very favoring for implementing a CNN based self-regulating fingerprint recognition system. Our method achieves an overall rate of 99.1% of accurately classified samples. |
doi_str_mv | 10.1007/s11042-022-12294-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682578232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682578232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1154-ce7cead983c856113db4631483d41612dedd07eb8569e3d21bb2ef6c0dd2fb263</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKeCz9HcmzTpfBBGrToYE0Z9Dm2SSsfWzqR72L83s4JvPt0L95xzOR8ht8DugTH1EACYQMoQKSDOBBVnZAKp4lQphPO484xRlTK4JFchbBgDmaKYkKd1Ua7neVk8J_N1uciXxWPy0nafzu992w2J2VYhtE1rqqHtuyQcw-B2ySFESZKvVtfkoqm2wd38zin5eCnK_I0u318X-XxJDUAqqHHKuMrOMm6yVAJwWwvJQWTcCpCA1lnLlKvjcea4RahrdI00zFpsapR8Su7G3L3vvw4uDHrTH3wXX2qUGaYqQ45RhaPK-D4E7xodS-wqf9TA9ImTHjnpyEn_cNIimvhoCqfGsfhf9D-ub8YXaJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682578232</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: Fingerprint classification system using CNN</title><source>SpringerLink Journals</source><creator>Nahar, Prateek ; Chaudhari, N. S. ; Tanwani, S. K.</creator><creatorcontrib>Nahar, Prateek ; Chaudhari, N. S. ; Tanwani, S. K.</creatorcontrib><description>Most solitary finger impression check and acknowledgment frameworks / methods are based on the minutiae feature points. Feature Extraction is a fundamental advance in solitary finger impression based acknowledgment frameworks. In this paper, a CNN based finger impression affirmation strategy is proposed without preprocessing an image. The framework fuses two phases include extraction and coordinating. Feature elicitation is realized by different filters with different parameter set; matching juncture relates extracted features and creates a corresponding score. Recognition attainment of the preferred system has been tested by utilizingFVC2004 database. The inference is very favoring for implementing a CNN based self-regulating fingerprint recognition system. Our method achieves an overall rate of 99.1% of accurately classified samples.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-12294-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biometric recognition systems ; Biometrics ; Classification ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Feature extraction ; Fingerprint verification ; Multimedia ; Multimedia Information Systems ; Neural networks ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022-07, Vol.81 (17), p.24515-24527</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1154-ce7cead983c856113db4631483d41612dedd07eb8569e3d21bb2ef6c0dd2fb263</cites><orcidid>0000-0002-7839-7728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-12294-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-12294-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nahar, Prateek</creatorcontrib><creatorcontrib>Chaudhari, N. S.</creatorcontrib><creatorcontrib>Tanwani, S. K.</creatorcontrib><title>RETRACTED ARTICLE: Fingerprint classification system using CNN</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Most solitary finger impression check and acknowledgment frameworks / methods are based on the minutiae feature points. Feature Extraction is a fundamental advance in solitary finger impression based acknowledgment frameworks. In this paper, a CNN based finger impression affirmation strategy is proposed without preprocessing an image. The framework fuses two phases include extraction and coordinating. Feature elicitation is realized by different filters with different parameter set; matching juncture relates extracted features and creates a corresponding score. Recognition attainment of the preferred system has been tested by utilizingFVC2004 database. The inference is very favoring for implementing a CNN based self-regulating fingerprint recognition system. Our method achieves an overall rate of 99.1% of accurately classified samples.</description><subject>Biometric recognition systems</subject><subject>Biometrics</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Fingerprint verification</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kFFLwzAUhYMoOKd_wKeCz9HcmzTpfBBGrToYE0Z9Dm2SSsfWzqR72L83s4JvPt0L95xzOR8ht8DugTH1EACYQMoQKSDOBBVnZAKp4lQphPO484xRlTK4JFchbBgDmaKYkKd1Ua7neVk8J_N1uciXxWPy0nafzu992w2J2VYhtE1rqqHtuyQcw-B2ySFESZKvVtfkoqm2wd38zin5eCnK_I0u318X-XxJDUAqqHHKuMrOMm6yVAJwWwvJQWTcCpCA1lnLlKvjcea4RahrdI00zFpsapR8Su7G3L3vvw4uDHrTH3wXX2qUGaYqQ45RhaPK-D4E7xodS-wqf9TA9ImTHjnpyEn_cNIimvhoCqfGsfhf9D-ub8YXaJY</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Nahar, Prateek</creator><creator>Chaudhari, N. S.</creator><creator>Tanwani, S. K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7839-7728</orcidid></search><sort><creationdate>20220701</creationdate><title>RETRACTED ARTICLE: Fingerprint classification system using CNN</title><author>Nahar, Prateek ; Chaudhari, N. S. ; Tanwani, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1154-ce7cead983c856113db4631483d41612dedd07eb8569e3d21bb2ef6c0dd2fb263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biometric recognition systems</topic><topic>Biometrics</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Fingerprint verification</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nahar, Prateek</creatorcontrib><creatorcontrib>Chaudhari, N. S.</creatorcontrib><creatorcontrib>Tanwani, S. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nahar, Prateek</au><au>Chaudhari, N. S.</au><au>Tanwani, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Fingerprint classification system using CNN</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>81</volume><issue>17</issue><spage>24515</spage><epage>24527</epage><pages>24515-24527</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Most solitary finger impression check and acknowledgment frameworks / methods are based on the minutiae feature points. Feature Extraction is a fundamental advance in solitary finger impression based acknowledgment frameworks. In this paper, a CNN based finger impression affirmation strategy is proposed without preprocessing an image. The framework fuses two phases include extraction and coordinating. Feature elicitation is realized by different filters with different parameter set; matching juncture relates extracted features and creates a corresponding score. Recognition attainment of the preferred system has been tested by utilizingFVC2004 database. The inference is very favoring for implementing a CNN based self-regulating fingerprint recognition system. Our method achieves an overall rate of 99.1% of accurately classified samples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-12294-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7839-7728</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2022-07, Vol.81 (17), p.24515-24527 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2682578232 |
source | SpringerLink Journals |
subjects | Biometric recognition systems Biometrics Classification Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Feature extraction Fingerprint verification Multimedia Multimedia Information Systems Neural networks Special Purpose and Application-Based Systems |
title | RETRACTED ARTICLE: Fingerprint classification system using CNN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Fingerprint%20classification%20system%20using%20CNN&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Nahar,%20Prateek&rft.date=2022-07-01&rft.volume=81&rft.issue=17&rft.spage=24515&rft.epage=24527&rft.pages=24515-24527&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-12294-4&rft_dat=%3Cproquest_cross%3E2682578232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682578232&rft_id=info:pmid/&rfr_iscdi=true |