RETRACTED ARTICLE: Fingerprint classification system using CNN

Most solitary finger impression check and acknowledgment frameworks / methods are based on the minutiae feature points. Feature Extraction is a fundamental advance in solitary finger impression based acknowledgment frameworks. In this paper, a CNN based finger impression affirmation strategy is prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2022-07, Vol.81 (17), p.24515-24527
Hauptverfasser: Nahar, Prateek, Chaudhari, N. S., Tanwani, S. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24527
container_issue 17
container_start_page 24515
container_title Multimedia tools and applications
container_volume 81
creator Nahar, Prateek
Chaudhari, N. S.
Tanwani, S. K.
description Most solitary finger impression check and acknowledgment frameworks / methods are based on the minutiae feature points. Feature Extraction is a fundamental advance in solitary finger impression based acknowledgment frameworks. In this paper, a CNN based finger impression affirmation strategy is proposed without preprocessing an image. The framework fuses two phases include extraction and coordinating. Feature elicitation is realized by different filters with different parameter set; matching juncture relates extracted features and creates a corresponding score. Recognition attainment of the preferred system has been tested by utilizingFVC2004 database. The inference is very favoring for implementing a CNN based self-regulating fingerprint recognition system. Our method achieves an overall rate of 99.1% of accurately classified samples.
doi_str_mv 10.1007/s11042-022-12294-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682578232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682578232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1154-ce7cead983c856113db4631483d41612dedd07eb8569e3d21bb2ef6c0dd2fb263</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKeCz9HcmzTpfBBGrToYE0Z9Dm2SSsfWzqR72L83s4JvPt0L95xzOR8ht8DugTH1EACYQMoQKSDOBBVnZAKp4lQphPO484xRlTK4JFchbBgDmaKYkKd1Ua7neVk8J_N1uciXxWPy0nafzu992w2J2VYhtE1rqqHtuyQcw-B2ySFESZKvVtfkoqm2wd38zin5eCnK_I0u318X-XxJDUAqqHHKuMrOMm6yVAJwWwvJQWTcCpCA1lnLlKvjcea4RahrdI00zFpsapR8Su7G3L3vvw4uDHrTH3wXX2qUGaYqQ45RhaPK-D4E7xodS-wqf9TA9ImTHjnpyEn_cNIimvhoCqfGsfhf9D-ub8YXaJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682578232</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: Fingerprint classification system using CNN</title><source>SpringerLink Journals</source><creator>Nahar, Prateek ; Chaudhari, N. S. ; Tanwani, S. K.</creator><creatorcontrib>Nahar, Prateek ; Chaudhari, N. S. ; Tanwani, S. K.</creatorcontrib><description>Most solitary finger impression check and acknowledgment frameworks / methods are based on the minutiae feature points. Feature Extraction is a fundamental advance in solitary finger impression based acknowledgment frameworks. In this paper, a CNN based finger impression affirmation strategy is proposed without preprocessing an image. The framework fuses two phases include extraction and coordinating. Feature elicitation is realized by different filters with different parameter set; matching juncture relates extracted features and creates a corresponding score. Recognition attainment of the preferred system has been tested by utilizingFVC2004 database. The inference is very favoring for implementing a CNN based self-regulating fingerprint recognition system. Our method achieves an overall rate of 99.1% of accurately classified samples.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-12294-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biometric recognition systems ; Biometrics ; Classification ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Feature extraction ; Fingerprint verification ; Multimedia ; Multimedia Information Systems ; Neural networks ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022-07, Vol.81 (17), p.24515-24527</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1154-ce7cead983c856113db4631483d41612dedd07eb8569e3d21bb2ef6c0dd2fb263</cites><orcidid>0000-0002-7839-7728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-12294-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-12294-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nahar, Prateek</creatorcontrib><creatorcontrib>Chaudhari, N. S.</creatorcontrib><creatorcontrib>Tanwani, S. K.</creatorcontrib><title>RETRACTED ARTICLE: Fingerprint classification system using CNN</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Most solitary finger impression check and acknowledgment frameworks / methods are based on the minutiae feature points. Feature Extraction is a fundamental advance in solitary finger impression based acknowledgment frameworks. In this paper, a CNN based finger impression affirmation strategy is proposed without preprocessing an image. The framework fuses two phases include extraction and coordinating. Feature elicitation is realized by different filters with different parameter set; matching juncture relates extracted features and creates a corresponding score. Recognition attainment of the preferred system has been tested by utilizingFVC2004 database. The inference is very favoring for implementing a CNN based self-regulating fingerprint recognition system. Our method achieves an overall rate of 99.1% of accurately classified samples.</description><subject>Biometric recognition systems</subject><subject>Biometrics</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Fingerprint verification</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kFFLwzAUhYMoOKd_wKeCz9HcmzTpfBBGrToYE0Z9Dm2SSsfWzqR72L83s4JvPt0L95xzOR8ht8DugTH1EACYQMoQKSDOBBVnZAKp4lQphPO484xRlTK4JFchbBgDmaKYkKd1Ua7neVk8J_N1uciXxWPy0nafzu992w2J2VYhtE1rqqHtuyQcw-B2ySFESZKvVtfkoqm2wd38zin5eCnK_I0u318X-XxJDUAqqHHKuMrOMm6yVAJwWwvJQWTcCpCA1lnLlKvjcea4RahrdI00zFpsapR8Su7G3L3vvw4uDHrTH3wXX2qUGaYqQ45RhaPK-D4E7xodS-wqf9TA9ImTHjnpyEn_cNIimvhoCqfGsfhf9D-ub8YXaJY</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Nahar, Prateek</creator><creator>Chaudhari, N. S.</creator><creator>Tanwani, S. K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7839-7728</orcidid></search><sort><creationdate>20220701</creationdate><title>RETRACTED ARTICLE: Fingerprint classification system using CNN</title><author>Nahar, Prateek ; Chaudhari, N. S. ; Tanwani, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1154-ce7cead983c856113db4631483d41612dedd07eb8569e3d21bb2ef6c0dd2fb263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biometric recognition systems</topic><topic>Biometrics</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Fingerprint verification</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nahar, Prateek</creatorcontrib><creatorcontrib>Chaudhari, N. S.</creatorcontrib><creatorcontrib>Tanwani, S. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nahar, Prateek</au><au>Chaudhari, N. S.</au><au>Tanwani, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Fingerprint classification system using CNN</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>81</volume><issue>17</issue><spage>24515</spage><epage>24527</epage><pages>24515-24527</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Most solitary finger impression check and acknowledgment frameworks / methods are based on the minutiae feature points. Feature Extraction is a fundamental advance in solitary finger impression based acknowledgment frameworks. In this paper, a CNN based finger impression affirmation strategy is proposed without preprocessing an image. The framework fuses two phases include extraction and coordinating. Feature elicitation is realized by different filters with different parameter set; matching juncture relates extracted features and creates a corresponding score. Recognition attainment of the preferred system has been tested by utilizingFVC2004 database. The inference is very favoring for implementing a CNN based self-regulating fingerprint recognition system. Our method achieves an overall rate of 99.1% of accurately classified samples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-12294-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7839-7728</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2022-07, Vol.81 (17), p.24515-24527
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2682578232
source SpringerLink Journals
subjects Biometric recognition systems
Biometrics
Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Feature extraction
Fingerprint verification
Multimedia
Multimedia Information Systems
Neural networks
Special Purpose and Application-Based Systems
title RETRACTED ARTICLE: Fingerprint classification system using CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Fingerprint%20classification%20system%20using%20CNN&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Nahar,%20Prateek&rft.date=2022-07-01&rft.volume=81&rft.issue=17&rft.spage=24515&rft.epage=24527&rft.pages=24515-24527&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-12294-4&rft_dat=%3Cproquest_cross%3E2682578232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682578232&rft_id=info:pmid/&rfr_iscdi=true