3DFCNN: real-time action recognition using 3D deep neural networks with raw depth information
This work describes an end-to-end approach for real-time human action recognition from raw depth image-sequences. The proposal is based on a 3D fully convolutional neural network, named 3DFCNN, which automatically encodes spatio-temporal patterns from raw depth sequences. The described 3D-CNN allows...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2022-07, Vol.81 (17), p.24119-24143 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24143 |
---|---|
container_issue | 17 |
container_start_page | 24119 |
container_title | Multimedia tools and applications |
container_volume | 81 |
creator | Sánchez-Caballero, Adrián de López-Diz, Sergio Fuentes-Jimenez, David Losada-Gutiérrez, Cristina Marrón-Romera, Marta Casillas-Pérez, David Sarker, Mohammad Ibrahim |
description | This work describes an end-to-end approach for real-time human action recognition from raw depth image-sequences. The proposal is based on a 3D fully convolutional neural network, named 3DFCNN, which automatically encodes spatio-temporal patterns from raw depth sequences. The described 3D-CNN allows actions classification from the spatial and temporal encoded information of depth sequences. The use of depth data ensures that action recognition is carried out protecting people’s privacy, since their identities can not be recognized from these data. The proposed 3DFCNN has been optimized to reach a good performance in terms of accuracy while working in real-time. Then, it has been evaluated and compared with other state-of-the-art systems in three widely used public datasets with different characteristics, demonstrating that 3DFCNN outperforms all the non-DNN-based state-of-the-art methods with a maximum accuracy of 83.6% and obtains results that are comparable to the DNN-based approaches, while maintaining a much lower computational cost of 1.09 seconds, what significantly increases its applicability in real-world environments. |
doi_str_mv | 10.1007/s11042-022-12091-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682578159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682578159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a511eddda2e84ea2b14c102c91b6a1415588d7b2416f6d8a8bce04837dd07d023</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqXwA5wicTbs2nHsckOFAlJVLnBElhM7JaVNgp2ool-P2yBx47Sj3Xmz0hByiXCNAPImIELKKDBGkcEE6e6IjFBITqVkeBw1V0ClADwlZyGsADATLB2Rd34_my4Wt4l3Zk27auMSU3RVU8dF0Szr6qD7UNXLhN8n1rk2qV3vzTqObtv4z5Bsq-4j8WYbr21UVV02fmP24Dk5Kc06uIvfOSZvs4fX6ROdvzw-T-_mtOAZ76gRiM5aa5hTqTMsx7RAYMUE88xgikIoZWXOUszKzCqj8sJBqri0FqQFxsfkashtffPVu9DpVdP7Or7ULFNMSIViEl1scBW-CcG7Ure-2hj_rRH0vkY91KhjjfpQo95FiA9QiOZ66fxf9D_UD1Kwdao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682578159</pqid></control><display><type>article</type><title>3DFCNN: real-time action recognition using 3D deep neural networks with raw depth information</title><source>SpringerLink Journals</source><creator>Sánchez-Caballero, Adrián ; de López-Diz, Sergio ; Fuentes-Jimenez, David ; Losada-Gutiérrez, Cristina ; Marrón-Romera, Marta ; Casillas-Pérez, David ; Sarker, Mohammad Ibrahim</creator><creatorcontrib>Sánchez-Caballero, Adrián ; de López-Diz, Sergio ; Fuentes-Jimenez, David ; Losada-Gutiérrez, Cristina ; Marrón-Romera, Marta ; Casillas-Pérez, David ; Sarker, Mohammad Ibrahim</creatorcontrib><description>This work describes an end-to-end approach for real-time human action recognition from raw depth image-sequences. The proposal is based on a 3D fully convolutional neural network, named 3DFCNN, which automatically encodes spatio-temporal patterns from raw depth sequences. The described 3D-CNN allows actions classification from the spatial and temporal encoded information of depth sequences. The use of depth data ensures that action recognition is carried out protecting people’s privacy, since their identities can not be recognized from these data. The proposed 3DFCNN has been optimized to reach a good performance in terms of accuracy while working in real-time. Then, it has been evaluated and compared with other state-of-the-art systems in three widely used public datasets with different characteristics, demonstrating that 3DFCNN outperforms all the non-DNN-based state-of-the-art methods with a maximum accuracy of 83.6% and obtains results that are comparable to the DNN-based approaches, while maintaining a much lower computational cost of 1.09 seconds, what significantly increases its applicability in real-world environments.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-12091-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Human activity recognition ; Human motion ; Multimedia Information Systems ; Neural networks ; Object recognition ; Real time ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022-07, Vol.81 (17), p.24119-24143</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a511eddda2e84ea2b14c102c91b6a1415588d7b2416f6d8a8bce04837dd07d023</citedby><cites>FETCH-LOGICAL-c363t-a511eddda2e84ea2b14c102c91b6a1415588d7b2416f6d8a8bce04837dd07d023</cites><orcidid>0000-0001-6424-4782 ; 0000-0002-5721-1242 ; 0000-0001-9545-327X ; 0000-0002-2463-4396 ; 0000-0002-3395-7568 ; 0000-0001-7723-2262 ; 0000-0002-9589-294X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-12091-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-12091-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sánchez-Caballero, Adrián</creatorcontrib><creatorcontrib>de López-Diz, Sergio</creatorcontrib><creatorcontrib>Fuentes-Jimenez, David</creatorcontrib><creatorcontrib>Losada-Gutiérrez, Cristina</creatorcontrib><creatorcontrib>Marrón-Romera, Marta</creatorcontrib><creatorcontrib>Casillas-Pérez, David</creatorcontrib><creatorcontrib>Sarker, Mohammad Ibrahim</creatorcontrib><title>3DFCNN: real-time action recognition using 3D deep neural networks with raw depth information</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>This work describes an end-to-end approach for real-time human action recognition from raw depth image-sequences. The proposal is based on a 3D fully convolutional neural network, named 3DFCNN, which automatically encodes spatio-temporal patterns from raw depth sequences. The described 3D-CNN allows actions classification from the spatial and temporal encoded information of depth sequences. The use of depth data ensures that action recognition is carried out protecting people’s privacy, since their identities can not be recognized from these data. The proposed 3DFCNN has been optimized to reach a good performance in terms of accuracy while working in real-time. Then, it has been evaluated and compared with other state-of-the-art systems in three widely used public datasets with different characteristics, demonstrating that 3DFCNN outperforms all the non-DNN-based state-of-the-art methods with a maximum accuracy of 83.6% and obtains results that are comparable to the DNN-based approaches, while maintaining a much lower computational cost of 1.09 seconds, what significantly increases its applicability in real-world environments.</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Real time</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMFOwzAQRC0EEqXwA5wicTbs2nHsckOFAlJVLnBElhM7JaVNgp2ool-P2yBx47Sj3Xmz0hByiXCNAPImIELKKDBGkcEE6e6IjFBITqVkeBw1V0ClADwlZyGsADATLB2Rd34_my4Wt4l3Zk27auMSU3RVU8dF0Szr6qD7UNXLhN8n1rk2qV3vzTqObtv4z5Bsq-4j8WYbr21UVV02fmP24Dk5Kc06uIvfOSZvs4fX6ROdvzw-T-_mtOAZ76gRiM5aa5hTqTMsx7RAYMUE88xgikIoZWXOUszKzCqj8sJBqri0FqQFxsfkashtffPVu9DpVdP7Or7ULFNMSIViEl1scBW-CcG7Ure-2hj_rRH0vkY91KhjjfpQo95FiA9QiOZ66fxf9D_UD1Kwdao</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Sánchez-Caballero, Adrián</creator><creator>de López-Diz, Sergio</creator><creator>Fuentes-Jimenez, David</creator><creator>Losada-Gutiérrez, Cristina</creator><creator>Marrón-Romera, Marta</creator><creator>Casillas-Pérez, David</creator><creator>Sarker, Mohammad Ibrahim</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6424-4782</orcidid><orcidid>https://orcid.org/0000-0002-5721-1242</orcidid><orcidid>https://orcid.org/0000-0001-9545-327X</orcidid><orcidid>https://orcid.org/0000-0002-2463-4396</orcidid><orcidid>https://orcid.org/0000-0002-3395-7568</orcidid><orcidid>https://orcid.org/0000-0001-7723-2262</orcidid><orcidid>https://orcid.org/0000-0002-9589-294X</orcidid></search><sort><creationdate>20220701</creationdate><title>3DFCNN: real-time action recognition using 3D deep neural networks with raw depth information</title><author>Sánchez-Caballero, Adrián ; de López-Diz, Sergio ; Fuentes-Jimenez, David ; Losada-Gutiérrez, Cristina ; Marrón-Romera, Marta ; Casillas-Pérez, David ; Sarker, Mohammad Ibrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a511eddda2e84ea2b14c102c91b6a1415588d7b2416f6d8a8bce04837dd07d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Real time</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-Caballero, Adrián</creatorcontrib><creatorcontrib>de López-Diz, Sergio</creatorcontrib><creatorcontrib>Fuentes-Jimenez, David</creatorcontrib><creatorcontrib>Losada-Gutiérrez, Cristina</creatorcontrib><creatorcontrib>Marrón-Romera, Marta</creatorcontrib><creatorcontrib>Casillas-Pérez, David</creatorcontrib><creatorcontrib>Sarker, Mohammad Ibrahim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez-Caballero, Adrián</au><au>de López-Diz, Sergio</au><au>Fuentes-Jimenez, David</au><au>Losada-Gutiérrez, Cristina</au><au>Marrón-Romera, Marta</au><au>Casillas-Pérez, David</au><au>Sarker, Mohammad Ibrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3DFCNN: real-time action recognition using 3D deep neural networks with raw depth information</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>81</volume><issue>17</issue><spage>24119</spage><epage>24143</epage><pages>24119-24143</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>This work describes an end-to-end approach for real-time human action recognition from raw depth image-sequences. The proposal is based on a 3D fully convolutional neural network, named 3DFCNN, which automatically encodes spatio-temporal patterns from raw depth sequences. The described 3D-CNN allows actions classification from the spatial and temporal encoded information of depth sequences. The use of depth data ensures that action recognition is carried out protecting people’s privacy, since their identities can not be recognized from these data. The proposed 3DFCNN has been optimized to reach a good performance in terms of accuracy while working in real-time. Then, it has been evaluated and compared with other state-of-the-art systems in three widely used public datasets with different characteristics, demonstrating that 3DFCNN outperforms all the non-DNN-based state-of-the-art methods with a maximum accuracy of 83.6% and obtains results that are comparable to the DNN-based approaches, while maintaining a much lower computational cost of 1.09 seconds, what significantly increases its applicability in real-world environments.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-12091-z</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-6424-4782</orcidid><orcidid>https://orcid.org/0000-0002-5721-1242</orcidid><orcidid>https://orcid.org/0000-0001-9545-327X</orcidid><orcidid>https://orcid.org/0000-0002-2463-4396</orcidid><orcidid>https://orcid.org/0000-0002-3395-7568</orcidid><orcidid>https://orcid.org/0000-0001-7723-2262</orcidid><orcidid>https://orcid.org/0000-0002-9589-294X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2022-07, Vol.81 (17), p.24119-24143 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2682578159 |
source | SpringerLink Journals |
subjects | Artificial neural networks Computer Communication Networks Computer Science Data Structures and Information Theory Human activity recognition Human motion Multimedia Information Systems Neural networks Object recognition Real time Special Purpose and Application-Based Systems |
title | 3DFCNN: real-time action recognition using 3D deep neural networks with raw depth information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3DFCNN:%20real-time%20action%20recognition%20using%203D%20deep%20neural%20networks%20with%20raw%20depth%20information&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=S%C3%A1nchez-Caballero,%20Adri%C3%A1n&rft.date=2022-07-01&rft.volume=81&rft.issue=17&rft.spage=24119&rft.epage=24143&rft.pages=24119-24143&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-12091-z&rft_dat=%3Cproquest_cross%3E2682578159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682578159&rft_id=info:pmid/&rfr_iscdi=true |