Liquid helium level regulation improvement in the LHC electrical distribution feedboxes

An important cryogenic equipment of the Large Hadron Collider (LHC) consists in the electrical distribution feedboxes (DFBs) which are used to power the superconducting magnets of the accelerator. These feedboxes contain the current leads achieving the electrical transition between the copper cables...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2022-05, Vol.1240 (1), p.12045
Hauptverfasser: Bradu, B, Coppier, H, Gery, J, Pezzetti, M, Tovar, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12045
container_title IOP conference series. Materials Science and Engineering
container_volume 1240
creator Bradu, B
Coppier, H
Gery, J
Pezzetti, M
Tovar, A
description An important cryogenic equipment of the Large Hadron Collider (LHC) consists in the electrical distribution feedboxes (DFBs) which are used to power the superconducting magnets of the accelerator. These feedboxes contain the current leads achieving the electrical transition between the copper cables at ambient temperature to the Niobium-Titanium wires at cryogenic temperature, immersed in a liquid helium bath at 4.5 K. This liquid helium bath must be regulated at a defined level to allow the powering of the LHC, and this regulation often caused non-availabilities in the past. This paper presents the development of a new control scheme, coupled to the existing PID level controller, significantly improving this regulation, and rejecting disturbances in a highly efficient manner. First, a dynamic model of the DFBs was developed in the EcosimPro software using the CRYOLIB library to reproduce in simulation the regulation issues. In a second step, the new proposed regulation modes were tested and validated in simulation. Finally, the paper will present the results obtained in 2021 on a real DFBs operation in the LHC, validating the new control approach prior its massive deployment all around the LHC cryogenics.
doi_str_mv 10.1088/1757-899X/1240/1/012045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682432703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682432703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-7fb9de657f28f466999a71d795336ea8d4896b1ae2d35b76b59f22b3a8efca23</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsFafwQFXLmLmkmRmllKqFSIuLOhumCRn7JTcmkvRtzcxUhEEV-eH850LH0KXlNxQIqVPRSg8qdSrT1lAfOoTykgQHqHZoXN8yJKeorO23RISiSAgM_QSu13vMryB3PUFzmEPOW7grc9N56oSu6Juqj0UUHbYlbjbAI5XCww5pF3jUpPjzLVDSvov3AJkSfUO7Tk6sSZv4eK7ztH6brlerLz46f5hcRt7KVM89IRNVAZRKCyTNogipZQRNBMq5DwCI7NAqiihBljGw0RESagsYwk3EmxqGJ-jq2nt8OWuh7bT26pvyuGiZpFkAWeC8IESE5U2Vds2YHXduMI0H5oSPUrUox49qtKjRE31JHGYvJ4mXVX_rH58Xv7mdJ3ZgeV_sP9d-ARm8oJV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682432703</pqid></control><display><type>article</type><title>Liquid helium level regulation improvement in the LHC electrical distribution feedboxes</title><source>Institute of Physics</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Bradu, B ; Coppier, H ; Gery, J ; Pezzetti, M ; Tovar, A</creator><creatorcontrib>Bradu, B ; Coppier, H ; Gery, J ; Pezzetti, M ; Tovar, A</creatorcontrib><description>An important cryogenic equipment of the Large Hadron Collider (LHC) consists in the electrical distribution feedboxes (DFBs) which are used to power the superconducting magnets of the accelerator. These feedboxes contain the current leads achieving the electrical transition between the copper cables at ambient temperature to the Niobium-Titanium wires at cryogenic temperature, immersed in a liquid helium bath at 4.5 K. This liquid helium bath must be regulated at a defined level to allow the powering of the LHC, and this regulation often caused non-availabilities in the past. This paper presents the development of a new control scheme, coupled to the existing PID level controller, significantly improving this regulation, and rejecting disturbances in a highly efficient manner. First, a dynamic model of the DFBs was developed in the EcosimPro software using the CRYOLIB library to reproduce in simulation the regulation issues. In a second step, the new proposed regulation modes were tested and validated in simulation. Finally, the paper will present the results obtained in 2021 on a real DFBs operation in the LHC, validating the new control approach prior its massive deployment all around the LHC cryogenics.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/1240/1/012045</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Ambient temperature ; Cryogenic equipment ; Cryogenic temperature ; Dynamic models ; Electric cables ; Helium ; Large Hadron Collider ; Liquid helium ; Niobium ; Proportional integral derivative ; Superconducting magnets</subject><ispartof>IOP conference series. Materials Science and Engineering, 2022-05, Vol.1240 (1), p.12045</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-7fb9de657f28f466999a71d795336ea8d4896b1ae2d35b76b59f22b3a8efca23</citedby><cites>FETCH-LOGICAL-c2935-7fb9de657f28f466999a71d795336ea8d4896b1ae2d35b76b59f22b3a8efca23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/1240/1/012045/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Bradu, B</creatorcontrib><creatorcontrib>Coppier, H</creatorcontrib><creatorcontrib>Gery, J</creatorcontrib><creatorcontrib>Pezzetti, M</creatorcontrib><creatorcontrib>Tovar, A</creatorcontrib><title>Liquid helium level regulation improvement in the LHC electrical distribution feedboxes</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>An important cryogenic equipment of the Large Hadron Collider (LHC) consists in the electrical distribution feedboxes (DFBs) which are used to power the superconducting magnets of the accelerator. These feedboxes contain the current leads achieving the electrical transition between the copper cables at ambient temperature to the Niobium-Titanium wires at cryogenic temperature, immersed in a liquid helium bath at 4.5 K. This liquid helium bath must be regulated at a defined level to allow the powering of the LHC, and this regulation often caused non-availabilities in the past. This paper presents the development of a new control scheme, coupled to the existing PID level controller, significantly improving this regulation, and rejecting disturbances in a highly efficient manner. First, a dynamic model of the DFBs was developed in the EcosimPro software using the CRYOLIB library to reproduce in simulation the regulation issues. In a second step, the new proposed regulation modes were tested and validated in simulation. Finally, the paper will present the results obtained in 2021 on a real DFBs operation in the LHC, validating the new control approach prior its massive deployment all around the LHC cryogenics.</description><subject>Ambient temperature</subject><subject>Cryogenic equipment</subject><subject>Cryogenic temperature</subject><subject>Dynamic models</subject><subject>Electric cables</subject><subject>Helium</subject><subject>Large Hadron Collider</subject><subject>Liquid helium</subject><subject>Niobium</subject><subject>Proportional integral derivative</subject><subject>Superconducting magnets</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtKw0AUhgdRsFafwQFXLmLmkmRmllKqFSIuLOhumCRn7JTcmkvRtzcxUhEEV-eH850LH0KXlNxQIqVPRSg8qdSrT1lAfOoTykgQHqHZoXN8yJKeorO23RISiSAgM_QSu13vMryB3PUFzmEPOW7grc9N56oSu6Juqj0UUHbYlbjbAI5XCww5pF3jUpPjzLVDSvov3AJkSfUO7Tk6sSZv4eK7ztH6brlerLz46f5hcRt7KVM89IRNVAZRKCyTNogipZQRNBMq5DwCI7NAqiihBljGw0RESagsYwk3EmxqGJ-jq2nt8OWuh7bT26pvyuGiZpFkAWeC8IESE5U2Vds2YHXduMI0H5oSPUrUox49qtKjRE31JHGYvJ4mXVX_rH58Xv7mdJ3ZgeV_sP9d-ARm8oJV</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Bradu, B</creator><creator>Coppier, H</creator><creator>Gery, J</creator><creator>Pezzetti, M</creator><creator>Tovar, A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220501</creationdate><title>Liquid helium level regulation improvement in the LHC electrical distribution feedboxes</title><author>Bradu, B ; Coppier, H ; Gery, J ; Pezzetti, M ; Tovar, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-7fb9de657f28f466999a71d795336ea8d4896b1ae2d35b76b59f22b3a8efca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ambient temperature</topic><topic>Cryogenic equipment</topic><topic>Cryogenic temperature</topic><topic>Dynamic models</topic><topic>Electric cables</topic><topic>Helium</topic><topic>Large Hadron Collider</topic><topic>Liquid helium</topic><topic>Niobium</topic><topic>Proportional integral derivative</topic><topic>Superconducting magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradu, B</creatorcontrib><creatorcontrib>Coppier, H</creatorcontrib><creatorcontrib>Gery, J</creatorcontrib><creatorcontrib>Pezzetti, M</creatorcontrib><creatorcontrib>Tovar, A</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradu, B</au><au>Coppier, H</au><au>Gery, J</au><au>Pezzetti, M</au><au>Tovar, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid helium level regulation improvement in the LHC electrical distribution feedboxes</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>1240</volume><issue>1</issue><spage>12045</spage><pages>12045-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>An important cryogenic equipment of the Large Hadron Collider (LHC) consists in the electrical distribution feedboxes (DFBs) which are used to power the superconducting magnets of the accelerator. These feedboxes contain the current leads achieving the electrical transition between the copper cables at ambient temperature to the Niobium-Titanium wires at cryogenic temperature, immersed in a liquid helium bath at 4.5 K. This liquid helium bath must be regulated at a defined level to allow the powering of the LHC, and this regulation often caused non-availabilities in the past. This paper presents the development of a new control scheme, coupled to the existing PID level controller, significantly improving this regulation, and rejecting disturbances in a highly efficient manner. First, a dynamic model of the DFBs was developed in the EcosimPro software using the CRYOLIB library to reproduce in simulation the regulation issues. In a second step, the new proposed regulation modes were tested and validated in simulation. Finally, the paper will present the results obtained in 2021 on a real DFBs operation in the LHC, validating the new control approach prior its massive deployment all around the LHC cryogenics.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/1240/1/012045</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2022-05, Vol.1240 (1), p.12045
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2682432703
source Institute of Physics; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Ambient temperature
Cryogenic equipment
Cryogenic temperature
Dynamic models
Electric cables
Helium
Large Hadron Collider
Liquid helium
Niobium
Proportional integral derivative
Superconducting magnets
title Liquid helium level regulation improvement in the LHC electrical distribution feedboxes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20helium%20level%20regulation%20improvement%20in%20the%20LHC%20electrical%20distribution%20feedboxes&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Bradu,%20B&rft.date=2022-05-01&rft.volume=1240&rft.issue=1&rft.spage=12045&rft.pages=12045-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/1240/1/012045&rft_dat=%3Cproquest_cross%3E2682432703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682432703&rft_id=info:pmid/&rfr_iscdi=true