Liquid helium level regulation improvement in the LHC electrical distribution feedboxes
An important cryogenic equipment of the Large Hadron Collider (LHC) consists in the electrical distribution feedboxes (DFBs) which are used to power the superconducting magnets of the accelerator. These feedboxes contain the current leads achieving the electrical transition between the copper cables...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2022-05, Vol.1240 (1), p.12045 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12045 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 1240 |
creator | Bradu, B Coppier, H Gery, J Pezzetti, M Tovar, A |
description | An important cryogenic equipment of the Large Hadron Collider (LHC) consists in the electrical distribution feedboxes (DFBs) which are used to power the superconducting magnets of the accelerator. These feedboxes contain the current leads achieving the electrical transition between the copper cables at ambient temperature to the Niobium-Titanium wires at cryogenic temperature, immersed in a liquid helium bath at 4.5 K. This liquid helium bath must be regulated at a defined level to allow the powering of the LHC, and this regulation often caused non-availabilities in the past. This paper presents the development of a new control scheme, coupled to the existing PID level controller, significantly improving this regulation, and rejecting disturbances in a highly efficient manner. First, a dynamic model of the DFBs was developed in the EcosimPro software using the CRYOLIB library to reproduce in simulation the regulation issues. In a second step, the new proposed regulation modes were tested and validated in simulation. Finally, the paper will present the results obtained in 2021 on a real DFBs operation in the LHC, validating the new control approach prior its massive deployment all around the LHC cryogenics. |
doi_str_mv | 10.1088/1757-899X/1240/1/012045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682432703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682432703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-7fb9de657f28f466999a71d795336ea8d4896b1ae2d35b76b59f22b3a8efca23</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsFafwQFXLmLmkmRmllKqFSIuLOhumCRn7JTcmkvRtzcxUhEEV-eH850LH0KXlNxQIqVPRSg8qdSrT1lAfOoTykgQHqHZoXN8yJKeorO23RISiSAgM_QSu13vMryB3PUFzmEPOW7grc9N56oSu6Juqj0UUHbYlbjbAI5XCww5pF3jUpPjzLVDSvov3AJkSfUO7Tk6sSZv4eK7ztH6brlerLz46f5hcRt7KVM89IRNVAZRKCyTNogipZQRNBMq5DwCI7NAqiihBljGw0RESagsYwk3EmxqGJ-jq2nt8OWuh7bT26pvyuGiZpFkAWeC8IESE5U2Vds2YHXduMI0H5oSPUrUox49qtKjRE31JHGYvJ4mXVX_rH58Xv7mdJ3ZgeV_sP9d-ARm8oJV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682432703</pqid></control><display><type>article</type><title>Liquid helium level regulation improvement in the LHC electrical distribution feedboxes</title><source>Institute of Physics</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Bradu, B ; Coppier, H ; Gery, J ; Pezzetti, M ; Tovar, A</creator><creatorcontrib>Bradu, B ; Coppier, H ; Gery, J ; Pezzetti, M ; Tovar, A</creatorcontrib><description>An important cryogenic equipment of the Large Hadron Collider (LHC) consists in the electrical distribution feedboxes (DFBs) which are used to power the superconducting magnets of the accelerator. These feedboxes contain the current leads achieving the electrical transition between the copper cables at ambient temperature to the Niobium-Titanium wires at cryogenic temperature, immersed in a liquid helium bath at 4.5 K. This liquid helium bath must be regulated at a defined level to allow the powering of the LHC, and this regulation often caused non-availabilities in the past. This paper presents the development of a new control scheme, coupled to the existing PID level controller, significantly improving this regulation, and rejecting disturbances in a highly efficient manner. First, a dynamic model of the DFBs was developed in the EcosimPro software using the CRYOLIB library to reproduce in simulation the regulation issues. In a second step, the new proposed regulation modes were tested and validated in simulation. Finally, the paper will present the results obtained in 2021 on a real DFBs operation in the LHC, validating the new control approach prior its massive deployment all around the LHC cryogenics.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/1240/1/012045</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Ambient temperature ; Cryogenic equipment ; Cryogenic temperature ; Dynamic models ; Electric cables ; Helium ; Large Hadron Collider ; Liquid helium ; Niobium ; Proportional integral derivative ; Superconducting magnets</subject><ispartof>IOP conference series. Materials Science and Engineering, 2022-05, Vol.1240 (1), p.12045</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-7fb9de657f28f466999a71d795336ea8d4896b1ae2d35b76b59f22b3a8efca23</citedby><cites>FETCH-LOGICAL-c2935-7fb9de657f28f466999a71d795336ea8d4896b1ae2d35b76b59f22b3a8efca23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/1240/1/012045/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Bradu, B</creatorcontrib><creatorcontrib>Coppier, H</creatorcontrib><creatorcontrib>Gery, J</creatorcontrib><creatorcontrib>Pezzetti, M</creatorcontrib><creatorcontrib>Tovar, A</creatorcontrib><title>Liquid helium level regulation improvement in the LHC electrical distribution feedboxes</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>An important cryogenic equipment of the Large Hadron Collider (LHC) consists in the electrical distribution feedboxes (DFBs) which are used to power the superconducting magnets of the accelerator. These feedboxes contain the current leads achieving the electrical transition between the copper cables at ambient temperature to the Niobium-Titanium wires at cryogenic temperature, immersed in a liquid helium bath at 4.5 K. This liquid helium bath must be regulated at a defined level to allow the powering of the LHC, and this regulation often caused non-availabilities in the past. This paper presents the development of a new control scheme, coupled to the existing PID level controller, significantly improving this regulation, and rejecting disturbances in a highly efficient manner. First, a dynamic model of the DFBs was developed in the EcosimPro software using the CRYOLIB library to reproduce in simulation the regulation issues. In a second step, the new proposed regulation modes were tested and validated in simulation. Finally, the paper will present the results obtained in 2021 on a real DFBs operation in the LHC, validating the new control approach prior its massive deployment all around the LHC cryogenics.</description><subject>Ambient temperature</subject><subject>Cryogenic equipment</subject><subject>Cryogenic temperature</subject><subject>Dynamic models</subject><subject>Electric cables</subject><subject>Helium</subject><subject>Large Hadron Collider</subject><subject>Liquid helium</subject><subject>Niobium</subject><subject>Proportional integral derivative</subject><subject>Superconducting magnets</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtKw0AUhgdRsFafwQFXLmLmkmRmllKqFSIuLOhumCRn7JTcmkvRtzcxUhEEV-eH850LH0KXlNxQIqVPRSg8qdSrT1lAfOoTykgQHqHZoXN8yJKeorO23RISiSAgM_QSu13vMryB3PUFzmEPOW7grc9N56oSu6Juqj0UUHbYlbjbAI5XCww5pF3jUpPjzLVDSvov3AJkSfUO7Tk6sSZv4eK7ztH6brlerLz46f5hcRt7KVM89IRNVAZRKCyTNogipZQRNBMq5DwCI7NAqiihBljGw0RESagsYwk3EmxqGJ-jq2nt8OWuh7bT26pvyuGiZpFkAWeC8IESE5U2Vds2YHXduMI0H5oSPUrUox49qtKjRE31JHGYvJ4mXVX_rH58Xv7mdJ3ZgeV_sP9d-ARm8oJV</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Bradu, B</creator><creator>Coppier, H</creator><creator>Gery, J</creator><creator>Pezzetti, M</creator><creator>Tovar, A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220501</creationdate><title>Liquid helium level regulation improvement in the LHC electrical distribution feedboxes</title><author>Bradu, B ; Coppier, H ; Gery, J ; Pezzetti, M ; Tovar, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-7fb9de657f28f466999a71d795336ea8d4896b1ae2d35b76b59f22b3a8efca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ambient temperature</topic><topic>Cryogenic equipment</topic><topic>Cryogenic temperature</topic><topic>Dynamic models</topic><topic>Electric cables</topic><topic>Helium</topic><topic>Large Hadron Collider</topic><topic>Liquid helium</topic><topic>Niobium</topic><topic>Proportional integral derivative</topic><topic>Superconducting magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradu, B</creatorcontrib><creatorcontrib>Coppier, H</creatorcontrib><creatorcontrib>Gery, J</creatorcontrib><creatorcontrib>Pezzetti, M</creatorcontrib><creatorcontrib>Tovar, A</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradu, B</au><au>Coppier, H</au><au>Gery, J</au><au>Pezzetti, M</au><au>Tovar, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid helium level regulation improvement in the LHC electrical distribution feedboxes</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>1240</volume><issue>1</issue><spage>12045</spage><pages>12045-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>An important cryogenic equipment of the Large Hadron Collider (LHC) consists in the electrical distribution feedboxes (DFBs) which are used to power the superconducting magnets of the accelerator. These feedboxes contain the current leads achieving the electrical transition between the copper cables at ambient temperature to the Niobium-Titanium wires at cryogenic temperature, immersed in a liquid helium bath at 4.5 K. This liquid helium bath must be regulated at a defined level to allow the powering of the LHC, and this regulation often caused non-availabilities in the past. This paper presents the development of a new control scheme, coupled to the existing PID level controller, significantly improving this regulation, and rejecting disturbances in a highly efficient manner. First, a dynamic model of the DFBs was developed in the EcosimPro software using the CRYOLIB library to reproduce in simulation the regulation issues. In a second step, the new proposed regulation modes were tested and validated in simulation. Finally, the paper will present the results obtained in 2021 on a real DFBs operation in the LHC, validating the new control approach prior its massive deployment all around the LHC cryogenics.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/1240/1/012045</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2022-05, Vol.1240 (1), p.12045 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2682432703 |
source | Institute of Physics; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Ambient temperature Cryogenic equipment Cryogenic temperature Dynamic models Electric cables Helium Large Hadron Collider Liquid helium Niobium Proportional integral derivative Superconducting magnets |
title | Liquid helium level regulation improvement in the LHC electrical distribution feedboxes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20helium%20level%20regulation%20improvement%20in%20the%20LHC%20electrical%20distribution%20feedboxes&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Bradu,%20B&rft.date=2022-05-01&rft.volume=1240&rft.issue=1&rft.spage=12045&rft.pages=12045-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/1240/1/012045&rft_dat=%3Cproquest_cross%3E2682432703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682432703&rft_id=info:pmid/&rfr_iscdi=true |