Influence of Radial Change in Gas Density on Nonlinear Hydrodynamic Effects in Its Flow Over a Rotating Disk

A laminar boundary layer in a gas flow near a disk rotating at a constant angular velocity under the conditions of a significant radial redistribution of the gas density is investigated. The analysis is performed on the basis of a self-similar transformation for the gas density varying according to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering physics and thermophysics 2022-05, Vol.95 (3), p.781-787
Hauptverfasser: Borisevich, V. D., Potanin, E. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 787
container_issue 3
container_start_page 781
container_title Journal of engineering physics and thermophysics
container_volume 95
creator Borisevich, V. D.
Potanin, E. P.
description A laminar boundary layer in a gas flow near a disk rotating at a constant angular velocity under the conditions of a significant radial redistribution of the gas density is investigated. The analysis is performed on the basis of a self-similar transformation for the gas density varying according to a power law in the radial direction. Calculation of the boundary layer characteristics in the gas flow was made by the Slezkin–Targ method. The dependence of the resistance forces acting on the disk on the gas compressibility is investigated. It is shown that an increase in the radial gradient of the gas density leads to a noticeable increase in azimuthal friction forces in the boundary layer near the disk. The results obtained for an extended disk are used to estimate the intensity of the circulation flow in a rotating cylinder of finite dimensions at a small ratio of the height of the cylinder to its radius. As follows from the calculation results, an increase in the gas compressibility parameter leads to an increase in its circulation rate.
doi_str_mv 10.1007/s10891-022-02536-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2682371227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A711056846</galeid><sourcerecordid>A711056846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-58bce438132c03fe810ea6313627d15efb311a5c075fa228ea5e0df6128f53b23</originalsourceid><addsrcrecordid>eNp9kV1PHCEUhieNTaq2f6BXJF71YpQDywxemvVrE6PJtk16R84yhy06ggXWdv-96JgYbxpCDoHnOUDepvkK_BA4748ycH0MLReiTiW7Vn1odkH1stU9_Nqpa97VIxDqU7OX8y3n_FjP5G4zLoIbNxQssejYEgePI5v_xrAm5gO7wMxOKWRftiwGdh3D6ANhYpfbIcVhG_DeW3bmHNmSn4VFLedj_MtuHikxZMtYsPiwZqc-331uPjocM315rfvNz_OzH_PL9urmYjE_uWqtnMnSKr2yNJMapLBcOtLACTsJshP9AIrcSgKgsrxXDoXQhIr44DoQ2im5EnK_OZj6PqT4Z0O5mNu4SaFeaUSnhexBiL5ShxO1xpGMDy6WhLaOgeqnYiDn6_5JD8BVp2ddFb69EypT6F9Z4yZns_i-fM-KibUp5pzImYfk7zFtDXDzHJmZIjM1MvMSmVFVkpOUK1wTSG_v_o_1BN_5lu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682371227</pqid></control><display><type>article</type><title>Influence of Radial Change in Gas Density on Nonlinear Hydrodynamic Effects in Its Flow Over a Rotating Disk</title><source>Springer Nature - Complete Springer Journals</source><creator>Borisevich, V. D. ; Potanin, E. P.</creator><creatorcontrib>Borisevich, V. D. ; Potanin, E. P.</creatorcontrib><description>A laminar boundary layer in a gas flow near a disk rotating at a constant angular velocity under the conditions of a significant radial redistribution of the gas density is investigated. The analysis is performed on the basis of a self-similar transformation for the gas density varying according to a power law in the radial direction. Calculation of the boundary layer characteristics in the gas flow was made by the Slezkin–Targ method. The dependence of the resistance forces acting on the disk on the gas compressibility is investigated. It is shown that an increase in the radial gradient of the gas density leads to a noticeable increase in azimuthal friction forces in the boundary layer near the disk. The results obtained for an extended disk are used to estimate the intensity of the circulation flow in a rotating cylinder of finite dimensions at a small ratio of the height of the cylinder to its radius. As follows from the calculation results, an increase in the gas compressibility parameter leads to an increase in its circulation rate.</description><identifier>ISSN: 1062-0125</identifier><identifier>EISSN: 1573-871X</identifier><identifier>DOI: 10.1007/s10891-022-02536-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Angular velocity ; Classical Mechanics ; Complex Systems ; Compressibility ; Engineering ; Engineering Thermodynamics ; Gas density ; Gas flow ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Laminar boundary layer ; Laws, regulations and rules ; Mathematical analysis ; Rotating cylinders ; Rotating disks ; Self-similarity ; Specific gravity ; Thermodynamics</subject><ispartof>Journal of engineering physics and thermophysics, 2022-05, Vol.95 (3), p.781-787</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-58bce438132c03fe810ea6313627d15efb311a5c075fa228ea5e0df6128f53b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10891-022-02536-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10891-022-02536-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Borisevich, V. D.</creatorcontrib><creatorcontrib>Potanin, E. P.</creatorcontrib><title>Influence of Radial Change in Gas Density on Nonlinear Hydrodynamic Effects in Its Flow Over a Rotating Disk</title><title>Journal of engineering physics and thermophysics</title><addtitle>J Eng Phys Thermophy</addtitle><description>A laminar boundary layer in a gas flow near a disk rotating at a constant angular velocity under the conditions of a significant radial redistribution of the gas density is investigated. The analysis is performed on the basis of a self-similar transformation for the gas density varying according to a power law in the radial direction. Calculation of the boundary layer characteristics in the gas flow was made by the Slezkin–Targ method. The dependence of the resistance forces acting on the disk on the gas compressibility is investigated. It is shown that an increase in the radial gradient of the gas density leads to a noticeable increase in azimuthal friction forces in the boundary layer near the disk. The results obtained for an extended disk are used to estimate the intensity of the circulation flow in a rotating cylinder of finite dimensions at a small ratio of the height of the cylinder to its radius. As follows from the calculation results, an increase in the gas compressibility parameter leads to an increase in its circulation rate.</description><subject>Analysis</subject><subject>Angular velocity</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Compressibility</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Gas density</subject><subject>Gas flow</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Laminar boundary layer</subject><subject>Laws, regulations and rules</subject><subject>Mathematical analysis</subject><subject>Rotating cylinders</subject><subject>Rotating disks</subject><subject>Self-similarity</subject><subject>Specific gravity</subject><subject>Thermodynamics</subject><issn>1062-0125</issn><issn>1573-871X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kV1PHCEUhieNTaq2f6BXJF71YpQDywxemvVrE6PJtk16R84yhy06ggXWdv-96JgYbxpCDoHnOUDepvkK_BA4748ycH0MLReiTiW7Vn1odkH1stU9_Nqpa97VIxDqU7OX8y3n_FjP5G4zLoIbNxQssejYEgePI5v_xrAm5gO7wMxOKWRftiwGdh3D6ANhYpfbIcVhG_DeW3bmHNmSn4VFLedj_MtuHikxZMtYsPiwZqc-331uPjocM315rfvNz_OzH_PL9urmYjE_uWqtnMnSKr2yNJMapLBcOtLACTsJshP9AIrcSgKgsrxXDoXQhIr44DoQ2im5EnK_OZj6PqT4Z0O5mNu4SaFeaUSnhexBiL5ShxO1xpGMDy6WhLaOgeqnYiDn6_5JD8BVp2ddFb69EypT6F9Z4yZns_i-fM-KibUp5pzImYfk7zFtDXDzHJmZIjM1MvMSmVFVkpOUK1wTSG_v_o_1BN_5lu4</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Borisevich, V. D.</creator><creator>Potanin, E. P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220501</creationdate><title>Influence of Radial Change in Gas Density on Nonlinear Hydrodynamic Effects in Its Flow Over a Rotating Disk</title><author>Borisevich, V. D. ; Potanin, E. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-58bce438132c03fe810ea6313627d15efb311a5c075fa228ea5e0df6128f53b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Angular velocity</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Compressibility</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Gas density</topic><topic>Gas flow</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Laminar boundary layer</topic><topic>Laws, regulations and rules</topic><topic>Mathematical analysis</topic><topic>Rotating cylinders</topic><topic>Rotating disks</topic><topic>Self-similarity</topic><topic>Specific gravity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borisevich, V. D.</creatorcontrib><creatorcontrib>Potanin, E. P.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of engineering physics and thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borisevich, V. D.</au><au>Potanin, E. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Radial Change in Gas Density on Nonlinear Hydrodynamic Effects in Its Flow Over a Rotating Disk</atitle><jtitle>Journal of engineering physics and thermophysics</jtitle><stitle>J Eng Phys Thermophy</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>95</volume><issue>3</issue><spage>781</spage><epage>787</epage><pages>781-787</pages><issn>1062-0125</issn><eissn>1573-871X</eissn><abstract>A laminar boundary layer in a gas flow near a disk rotating at a constant angular velocity under the conditions of a significant radial redistribution of the gas density is investigated. The analysis is performed on the basis of a self-similar transformation for the gas density varying according to a power law in the radial direction. Calculation of the boundary layer characteristics in the gas flow was made by the Slezkin–Targ method. The dependence of the resistance forces acting on the disk on the gas compressibility is investigated. It is shown that an increase in the radial gradient of the gas density leads to a noticeable increase in azimuthal friction forces in the boundary layer near the disk. The results obtained for an extended disk are used to estimate the intensity of the circulation flow in a rotating cylinder of finite dimensions at a small ratio of the height of the cylinder to its radius. As follows from the calculation results, an increase in the gas compressibility parameter leads to an increase in its circulation rate.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10891-022-02536-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-0125
ispartof Journal of engineering physics and thermophysics, 2022-05, Vol.95 (3), p.781-787
issn 1062-0125
1573-871X
language eng
recordid cdi_proquest_journals_2682371227
source Springer Nature - Complete Springer Journals
subjects Analysis
Angular velocity
Classical Mechanics
Complex Systems
Compressibility
Engineering
Engineering Thermodynamics
Gas density
Gas flow
Heat and Mass Transfer
Industrial Chemistry/Chemical Engineering
Laminar boundary layer
Laws, regulations and rules
Mathematical analysis
Rotating cylinders
Rotating disks
Self-similarity
Specific gravity
Thermodynamics
title Influence of Radial Change in Gas Density on Nonlinear Hydrodynamic Effects in Its Flow Over a Rotating Disk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Radial%20Change%20in%20Gas%20Density%20on%20Nonlinear%20Hydrodynamic%20Effects%20in%20Its%20Flow%20Over%20a%20Rotating%20Disk&rft.jtitle=Journal%20of%20engineering%20physics%20and%20thermophysics&rft.au=Borisevich,%20V.%20D.&rft.date=2022-05-01&rft.volume=95&rft.issue=3&rft.spage=781&rft.epage=787&rft.pages=781-787&rft.issn=1062-0125&rft.eissn=1573-871X&rft_id=info:doi/10.1007/s10891-022-02536-5&rft_dat=%3Cgale_proqu%3EA711056846%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682371227&rft_id=info:pmid/&rft_galeid=A711056846&rfr_iscdi=true