Gradient field divergence-based small target detection in infrared images

Infrared small target detection in complex cloud backgrounds has long been a research challenge. A novel robust target detection method based on the divergence of gradient field is proposed to enhance the target and suppress the complex background synchronously. The negative gradient field of the ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2022-08, Vol.54 (8), Article 484
Hauptverfasser: Ma, Tianlei, Yang, Zhen, Wang, Jiaqi, Ren, Xiangyang, Ku, Yanan, Peng, Jinzhu, Liu, Yunpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Optical and quantum electronics
container_volume 54
creator Ma, Tianlei
Yang, Zhen
Wang, Jiaqi
Ren, Xiangyang
Ku, Yanan
Peng, Jinzhu
Liu, Yunpeng
description Infrared small target detection in complex cloud backgrounds has long been a research challenge. A novel robust target detection method based on the divergence of gradient field is proposed to enhance the target and suppress the complex background synchronously. The negative gradient field of the target intensity (NIG field) matches with characteristics of the positive source. The cloud cluster, on the other hand, lacks this feature. First, the NIG field is calculated based on the target’s property from the original image. The divergence values of NIG field are then calculated to produce a defined divergence map (D map), which highlights the target regions while suppressing the clutter regions. Meanwhile, a local vectors angle measure (LVAM) operator of the NIG field is designed to measure the angle distribution of 8-neighbour vectors and eliminate false target areas. Then, the defined local angle map (LA map) is obtained by measuring the local angle value of 8-neighbour vectors for each patch of NIG field. In addition, the divergence-local angle map (D-LA map) is obtained as the Hadamard product of the D map and LA map. Finally, we can easily obtain the target via a constant false alarm ratio based on the D-LA map. The performance evaluation results of real image sequences show that the proposed method is satisfactory for clutter suppression and target detection. Moreover, the results from comparative experiments show that the proposed method outperforms conventional methods in terms of detection accuracy and false alarm rate.
doi_str_mv 10.1007/s11082-022-03672-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682370822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682370822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ace69e4701e86902968e938b81ae2bdba80b63367c6b2e1a1f3b7587eabc72df3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkaZPsUYq2hYIXBW8hH7Nly3a3Jqngvzd1BW_CDDMM7zuTPITcMrhnAOohMQaaU-AlhVScsjMyYfPSaKbez8kEBEiqa1ZfkquUdgAgZ3OYkPUy2tBin6umxS5Uof3EuMXeI3U2YajS3nZdlW0Z5ipgRp_boa_aUzTRxiJp93aL6ZpcNLZLePNbp-Tt-el1saKbl-V68bihXkiRqfUoa5wpYKhlDbyWGmuhnWYWuQvOanBSlD946Tgyyxrh1FwrtM4rHhoxJXfj3kMcPo6YstkNx9iXk4ZLzYUqIHhR8VHl45BSxMYcYnln_DIMzAmZGZGZgsz8IDOsmMRoSkXcbzH-rf7H9Q3PK27K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682370822</pqid></control><display><type>article</type><title>Gradient field divergence-based small target detection in infrared images</title><source>Springer Nature - Complete Springer Journals</source><creator>Ma, Tianlei ; Yang, Zhen ; Wang, Jiaqi ; Ren, Xiangyang ; Ku, Yanan ; Peng, Jinzhu ; Liu, Yunpeng</creator><creatorcontrib>Ma, Tianlei ; Yang, Zhen ; Wang, Jiaqi ; Ren, Xiangyang ; Ku, Yanan ; Peng, Jinzhu ; Liu, Yunpeng</creatorcontrib><description>Infrared small target detection in complex cloud backgrounds has long been a research challenge. A novel robust target detection method based on the divergence of gradient field is proposed to enhance the target and suppress the complex background synchronously. The negative gradient field of the target intensity (NIG field) matches with characteristics of the positive source. The cloud cluster, on the other hand, lacks this feature. First, the NIG field is calculated based on the target’s property from the original image. The divergence values of NIG field are then calculated to produce a defined divergence map (D map), which highlights the target regions while suppressing the clutter regions. Meanwhile, a local vectors angle measure (LVAM) operator of the NIG field is designed to measure the angle distribution of 8-neighbour vectors and eliminate false target areas. Then, the defined local angle map (LA map) is obtained by measuring the local angle value of 8-neighbour vectors for each patch of NIG field. In addition, the divergence-local angle map (D-LA map) is obtained as the Hadamard product of the D map and LA map. Finally, we can easily obtain the target via a constant false alarm ratio based on the D-LA map. The performance evaluation results of real image sequences show that the proposed method is satisfactory for clutter suppression and target detection. Moreover, the results from comparative experiments show that the proposed method outperforms conventional methods in terms of detection accuracy and false alarm rate.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-022-03672-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Clutter ; Computer Communication Networks ; Divergence ; Electrical Engineering ; False alarms ; Infrared imagery ; Lasers ; Mathematical analysis ; Optical Devices ; Optics ; Performance evaluation ; Photonics ; Physics ; Physics and Astronomy ; Target detection</subject><ispartof>Optical and quantum electronics, 2022-08, Vol.54 (8), Article 484</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ace69e4701e86902968e938b81ae2bdba80b63367c6b2e1a1f3b7587eabc72df3</citedby><cites>FETCH-LOGICAL-c363t-ace69e4701e86902968e938b81ae2bdba80b63367c6b2e1a1f3b7587eabc72df3</cites><orcidid>0000-0003-2414-8926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-022-03672-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-022-03672-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ma, Tianlei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Ren, Xiangyang</creatorcontrib><creatorcontrib>Ku, Yanan</creatorcontrib><creatorcontrib>Peng, Jinzhu</creatorcontrib><creatorcontrib>Liu, Yunpeng</creatorcontrib><title>Gradient field divergence-based small target detection in infrared images</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>Infrared small target detection in complex cloud backgrounds has long been a research challenge. A novel robust target detection method based on the divergence of gradient field is proposed to enhance the target and suppress the complex background synchronously. The negative gradient field of the target intensity (NIG field) matches with characteristics of the positive source. The cloud cluster, on the other hand, lacks this feature. First, the NIG field is calculated based on the target’s property from the original image. The divergence values of NIG field are then calculated to produce a defined divergence map (D map), which highlights the target regions while suppressing the clutter regions. Meanwhile, a local vectors angle measure (LVAM) operator of the NIG field is designed to measure the angle distribution of 8-neighbour vectors and eliminate false target areas. Then, the defined local angle map (LA map) is obtained by measuring the local angle value of 8-neighbour vectors for each patch of NIG field. In addition, the divergence-local angle map (D-LA map) is obtained as the Hadamard product of the D map and LA map. Finally, we can easily obtain the target via a constant false alarm ratio based on the D-LA map. The performance evaluation results of real image sequences show that the proposed method is satisfactory for clutter suppression and target detection. Moreover, the results from comparative experiments show that the proposed method outperforms conventional methods in terms of detection accuracy and false alarm rate.</description><subject>Characterization and Evaluation of Materials</subject><subject>Clutter</subject><subject>Computer Communication Networks</subject><subject>Divergence</subject><subject>Electrical Engineering</subject><subject>False alarms</subject><subject>Infrared imagery</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Performance evaluation</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Target detection</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkaZPsUYq2hYIXBW8hH7Nly3a3Jqngvzd1BW_CDDMM7zuTPITcMrhnAOohMQaaU-AlhVScsjMyYfPSaKbez8kEBEiqa1ZfkquUdgAgZ3OYkPUy2tBin6umxS5Uof3EuMXeI3U2YajS3nZdlW0Z5ipgRp_boa_aUzTRxiJp93aL6ZpcNLZLePNbp-Tt-el1saKbl-V68bihXkiRqfUoa5wpYKhlDbyWGmuhnWYWuQvOanBSlD946Tgyyxrh1FwrtM4rHhoxJXfj3kMcPo6YstkNx9iXk4ZLzYUqIHhR8VHl45BSxMYcYnln_DIMzAmZGZGZgsz8IDOsmMRoSkXcbzH-rf7H9Q3PK27K</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ma, Tianlei</creator><creator>Yang, Zhen</creator><creator>Wang, Jiaqi</creator><creator>Ren, Xiangyang</creator><creator>Ku, Yanan</creator><creator>Peng, Jinzhu</creator><creator>Liu, Yunpeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2414-8926</orcidid></search><sort><creationdate>20220801</creationdate><title>Gradient field divergence-based small target detection in infrared images</title><author>Ma, Tianlei ; Yang, Zhen ; Wang, Jiaqi ; Ren, Xiangyang ; Ku, Yanan ; Peng, Jinzhu ; Liu, Yunpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ace69e4701e86902968e938b81ae2bdba80b63367c6b2e1a1f3b7587eabc72df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Clutter</topic><topic>Computer Communication Networks</topic><topic>Divergence</topic><topic>Electrical Engineering</topic><topic>False alarms</topic><topic>Infrared imagery</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Performance evaluation</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Tianlei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Ren, Xiangyang</creatorcontrib><creatorcontrib>Ku, Yanan</creatorcontrib><creatorcontrib>Peng, Jinzhu</creatorcontrib><creatorcontrib>Liu, Yunpeng</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Tianlei</au><au>Yang, Zhen</au><au>Wang, Jiaqi</au><au>Ren, Xiangyang</au><au>Ku, Yanan</au><au>Peng, Jinzhu</au><au>Liu, Yunpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient field divergence-based small target detection in infrared images</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>54</volume><issue>8</issue><artnum>484</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>Infrared small target detection in complex cloud backgrounds has long been a research challenge. A novel robust target detection method based on the divergence of gradient field is proposed to enhance the target and suppress the complex background synchronously. The negative gradient field of the target intensity (NIG field) matches with characteristics of the positive source. The cloud cluster, on the other hand, lacks this feature. First, the NIG field is calculated based on the target’s property from the original image. The divergence values of NIG field are then calculated to produce a defined divergence map (D map), which highlights the target regions while suppressing the clutter regions. Meanwhile, a local vectors angle measure (LVAM) operator of the NIG field is designed to measure the angle distribution of 8-neighbour vectors and eliminate false target areas. Then, the defined local angle map (LA map) is obtained by measuring the local angle value of 8-neighbour vectors for each patch of NIG field. In addition, the divergence-local angle map (D-LA map) is obtained as the Hadamard product of the D map and LA map. Finally, we can easily obtain the target via a constant false alarm ratio based on the D-LA map. The performance evaluation results of real image sequences show that the proposed method is satisfactory for clutter suppression and target detection. Moreover, the results from comparative experiments show that the proposed method outperforms conventional methods in terms of detection accuracy and false alarm rate.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-022-03672-1</doi><orcidid>https://orcid.org/0000-0003-2414-8926</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2022-08, Vol.54 (8), Article 484
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2682370822
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Clutter
Computer Communication Networks
Divergence
Electrical Engineering
False alarms
Infrared imagery
Lasers
Mathematical analysis
Optical Devices
Optics
Performance evaluation
Photonics
Physics
Physics and Astronomy
Target detection
title Gradient field divergence-based small target detection in infrared images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A26%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20field%20divergence-based%20small%20target%20detection%20in%20infrared%20images&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Ma,%20Tianlei&rft.date=2022-08-01&rft.volume=54&rft.issue=8&rft.artnum=484&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-022-03672-1&rft_dat=%3Cproquest_cross%3E2682370822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682370822&rft_id=info:pmid/&rfr_iscdi=true