Gradient field divergence-based small target detection in infrared images
Infrared small target detection in complex cloud backgrounds has long been a research challenge. A novel robust target detection method based on the divergence of gradient field is proposed to enhance the target and suppress the complex background synchronously. The negative gradient field of the ta...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2022-08, Vol.54 (8), Article 484 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Optical and quantum electronics |
container_volume | 54 |
creator | Ma, Tianlei Yang, Zhen Wang, Jiaqi Ren, Xiangyang Ku, Yanan Peng, Jinzhu Liu, Yunpeng |
description | Infrared small target detection in complex cloud backgrounds has long been a research challenge. A novel robust target detection method based on the divergence of gradient field is proposed to enhance the target and suppress the complex background synchronously. The negative gradient field of the target intensity (NIG field) matches with characteristics of the positive source. The cloud cluster, on the other hand, lacks this feature. First, the NIG field is calculated based on the target’s property from the original image. The divergence values of NIG field are then calculated to produce a defined divergence map (D map), which highlights the target regions while suppressing the clutter regions. Meanwhile, a local vectors angle measure (LVAM) operator of the NIG field is designed to measure the angle distribution of 8-neighbour vectors and eliminate false target areas. Then, the defined local angle map (LA map) is obtained by measuring the local angle value of 8-neighbour vectors for each patch of NIG field. In addition, the divergence-local angle map (D-LA map) is obtained as the Hadamard product of the D map and LA map. Finally, we can easily obtain the target via a constant false alarm ratio based on the D-LA map. The performance evaluation results of real image sequences show that the proposed method is satisfactory for clutter suppression and target detection. Moreover, the results from comparative experiments show that the proposed method outperforms conventional methods in terms of detection accuracy and false alarm rate. |
doi_str_mv | 10.1007/s11082-022-03672-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682370822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682370822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ace69e4701e86902968e938b81ae2bdba80b63367c6b2e1a1f3b7587eabc72df3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkaZPsUYq2hYIXBW8hH7Nly3a3Jqngvzd1BW_CDDMM7zuTPITcMrhnAOohMQaaU-AlhVScsjMyYfPSaKbez8kEBEiqa1ZfkquUdgAgZ3OYkPUy2tBin6umxS5Uof3EuMXeI3U2YajS3nZdlW0Z5ipgRp_boa_aUzTRxiJp93aL6ZpcNLZLePNbp-Tt-el1saKbl-V68bihXkiRqfUoa5wpYKhlDbyWGmuhnWYWuQvOanBSlD946Tgyyxrh1FwrtM4rHhoxJXfj3kMcPo6YstkNx9iXk4ZLzYUqIHhR8VHl45BSxMYcYnln_DIMzAmZGZGZgsz8IDOsmMRoSkXcbzH-rf7H9Q3PK27K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682370822</pqid></control><display><type>article</type><title>Gradient field divergence-based small target detection in infrared images</title><source>Springer Nature - Complete Springer Journals</source><creator>Ma, Tianlei ; Yang, Zhen ; Wang, Jiaqi ; Ren, Xiangyang ; Ku, Yanan ; Peng, Jinzhu ; Liu, Yunpeng</creator><creatorcontrib>Ma, Tianlei ; Yang, Zhen ; Wang, Jiaqi ; Ren, Xiangyang ; Ku, Yanan ; Peng, Jinzhu ; Liu, Yunpeng</creatorcontrib><description>Infrared small target detection in complex cloud backgrounds has long been a research challenge. A novel robust target detection method based on the divergence of gradient field is proposed to enhance the target and suppress the complex background synchronously. The negative gradient field of the target intensity (NIG field) matches with characteristics of the positive source. The cloud cluster, on the other hand, lacks this feature. First, the NIG field is calculated based on the target’s property from the original image. The divergence values of NIG field are then calculated to produce a defined divergence map (D map), which highlights the target regions while suppressing the clutter regions. Meanwhile, a local vectors angle measure (LVAM) operator of the NIG field is designed to measure the angle distribution of 8-neighbour vectors and eliminate false target areas. Then, the defined local angle map (LA map) is obtained by measuring the local angle value of 8-neighbour vectors for each patch of NIG field. In addition, the divergence-local angle map (D-LA map) is obtained as the Hadamard product of the D map and LA map. Finally, we can easily obtain the target via a constant false alarm ratio based on the D-LA map. The performance evaluation results of real image sequences show that the proposed method is satisfactory for clutter suppression and target detection. Moreover, the results from comparative experiments show that the proposed method outperforms conventional methods in terms of detection accuracy and false alarm rate.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-022-03672-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Clutter ; Computer Communication Networks ; Divergence ; Electrical Engineering ; False alarms ; Infrared imagery ; Lasers ; Mathematical analysis ; Optical Devices ; Optics ; Performance evaluation ; Photonics ; Physics ; Physics and Astronomy ; Target detection</subject><ispartof>Optical and quantum electronics, 2022-08, Vol.54 (8), Article 484</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ace69e4701e86902968e938b81ae2bdba80b63367c6b2e1a1f3b7587eabc72df3</citedby><cites>FETCH-LOGICAL-c363t-ace69e4701e86902968e938b81ae2bdba80b63367c6b2e1a1f3b7587eabc72df3</cites><orcidid>0000-0003-2414-8926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-022-03672-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-022-03672-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ma, Tianlei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Ren, Xiangyang</creatorcontrib><creatorcontrib>Ku, Yanan</creatorcontrib><creatorcontrib>Peng, Jinzhu</creatorcontrib><creatorcontrib>Liu, Yunpeng</creatorcontrib><title>Gradient field divergence-based small target detection in infrared images</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>Infrared small target detection in complex cloud backgrounds has long been a research challenge. A novel robust target detection method based on the divergence of gradient field is proposed to enhance the target and suppress the complex background synchronously. The negative gradient field of the target intensity (NIG field) matches with characteristics of the positive source. The cloud cluster, on the other hand, lacks this feature. First, the NIG field is calculated based on the target’s property from the original image. The divergence values of NIG field are then calculated to produce a defined divergence map (D map), which highlights the target regions while suppressing the clutter regions. Meanwhile, a local vectors angle measure (LVAM) operator of the NIG field is designed to measure the angle distribution of 8-neighbour vectors and eliminate false target areas. Then, the defined local angle map (LA map) is obtained by measuring the local angle value of 8-neighbour vectors for each patch of NIG field. In addition, the divergence-local angle map (D-LA map) is obtained as the Hadamard product of the D map and LA map. Finally, we can easily obtain the target via a constant false alarm ratio based on the D-LA map. The performance evaluation results of real image sequences show that the proposed method is satisfactory for clutter suppression and target detection. Moreover, the results from comparative experiments show that the proposed method outperforms conventional methods in terms of detection accuracy and false alarm rate.</description><subject>Characterization and Evaluation of Materials</subject><subject>Clutter</subject><subject>Computer Communication Networks</subject><subject>Divergence</subject><subject>Electrical Engineering</subject><subject>False alarms</subject><subject>Infrared imagery</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Performance evaluation</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Target detection</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkaZPsUYq2hYIXBW8hH7Nly3a3Jqngvzd1BW_CDDMM7zuTPITcMrhnAOohMQaaU-AlhVScsjMyYfPSaKbez8kEBEiqa1ZfkquUdgAgZ3OYkPUy2tBin6umxS5Uof3EuMXeI3U2YajS3nZdlW0Z5ipgRp_boa_aUzTRxiJp93aL6ZpcNLZLePNbp-Tt-el1saKbl-V68bihXkiRqfUoa5wpYKhlDbyWGmuhnWYWuQvOanBSlD946Tgyyxrh1FwrtM4rHhoxJXfj3kMcPo6YstkNx9iXk4ZLzYUqIHhR8VHl45BSxMYcYnln_DIMzAmZGZGZgsz8IDOsmMRoSkXcbzH-rf7H9Q3PK27K</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ma, Tianlei</creator><creator>Yang, Zhen</creator><creator>Wang, Jiaqi</creator><creator>Ren, Xiangyang</creator><creator>Ku, Yanan</creator><creator>Peng, Jinzhu</creator><creator>Liu, Yunpeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2414-8926</orcidid></search><sort><creationdate>20220801</creationdate><title>Gradient field divergence-based small target detection in infrared images</title><author>Ma, Tianlei ; Yang, Zhen ; Wang, Jiaqi ; Ren, Xiangyang ; Ku, Yanan ; Peng, Jinzhu ; Liu, Yunpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ace69e4701e86902968e938b81ae2bdba80b63367c6b2e1a1f3b7587eabc72df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Clutter</topic><topic>Computer Communication Networks</topic><topic>Divergence</topic><topic>Electrical Engineering</topic><topic>False alarms</topic><topic>Infrared imagery</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Performance evaluation</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Tianlei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Ren, Xiangyang</creatorcontrib><creatorcontrib>Ku, Yanan</creatorcontrib><creatorcontrib>Peng, Jinzhu</creatorcontrib><creatorcontrib>Liu, Yunpeng</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Tianlei</au><au>Yang, Zhen</au><au>Wang, Jiaqi</au><au>Ren, Xiangyang</au><au>Ku, Yanan</au><au>Peng, Jinzhu</au><au>Liu, Yunpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient field divergence-based small target detection in infrared images</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>54</volume><issue>8</issue><artnum>484</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>Infrared small target detection in complex cloud backgrounds has long been a research challenge. A novel robust target detection method based on the divergence of gradient field is proposed to enhance the target and suppress the complex background synchronously. The negative gradient field of the target intensity (NIG field) matches with characteristics of the positive source. The cloud cluster, on the other hand, lacks this feature. First, the NIG field is calculated based on the target’s property from the original image. The divergence values of NIG field are then calculated to produce a defined divergence map (D map), which highlights the target regions while suppressing the clutter regions. Meanwhile, a local vectors angle measure (LVAM) operator of the NIG field is designed to measure the angle distribution of 8-neighbour vectors and eliminate false target areas. Then, the defined local angle map (LA map) is obtained by measuring the local angle value of 8-neighbour vectors for each patch of NIG field. In addition, the divergence-local angle map (D-LA map) is obtained as the Hadamard product of the D map and LA map. Finally, we can easily obtain the target via a constant false alarm ratio based on the D-LA map. The performance evaluation results of real image sequences show that the proposed method is satisfactory for clutter suppression and target detection. Moreover, the results from comparative experiments show that the proposed method outperforms conventional methods in terms of detection accuracy and false alarm rate.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-022-03672-1</doi><orcidid>https://orcid.org/0000-0003-2414-8926</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2022-08, Vol.54 (8), Article 484 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_proquest_journals_2682370822 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Clutter Computer Communication Networks Divergence Electrical Engineering False alarms Infrared imagery Lasers Mathematical analysis Optical Devices Optics Performance evaluation Photonics Physics Physics and Astronomy Target detection |
title | Gradient field divergence-based small target detection in infrared images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A26%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20field%20divergence-based%20small%20target%20detection%20in%20infrared%20images&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Ma,%20Tianlei&rft.date=2022-08-01&rft.volume=54&rft.issue=8&rft.artnum=484&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-022-03672-1&rft_dat=%3Cproquest_cross%3E2682370822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682370822&rft_id=info:pmid/&rfr_iscdi=true |