Traction control design for off-road mobility using an SPH-DAE cosimulation framework
We describe an analytical framework implemented in a general-purpose mobility simulation platform for enabling the design of control policies for improved rover mobility in granular terrain environments. We employ a homogenization of the granular material and use an elasto-plastic continuum model to...
Gespeichert in:
Veröffentlicht in: | Multibody system dynamics 2022-06, Vol.55 (1-2), p.165-188 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 1-2 |
container_start_page | 165 |
container_title | Multibody system dynamics |
container_volume | 55 |
creator | Hu, Wei Zhou, Zhenhao Chandler, Samuel Apostolopoulos, Dimitrios Kamrin, Ken Serban, Radu Negrut, Dan |
description | We describe an analytical framework implemented in a general-purpose mobility simulation platform for enabling the design of control policies for improved rover mobility in granular terrain environments. We employ a homogenization of the granular material and use an elasto-plastic continuum model to capture the dynamics of the deformable terrain. The solution of the continuum problem is obtained using the smoothed particle hydrodynamics method. The Curiosity rover wheel geometry is defined through a mesh. The interaction between each wheel and the granular terrain is handled via cosimulation using so-called boundary conditions enforcing particles attached to the rover wheel. A traction control algorithm is implemented to reduce wheel slip and battery drain in hill-climbing scenario. Several parametric studies are carried out to assess rover simulation robustness for operation in uphill mobility scenario with different heights and friction coefficients. The analysis is carried out in an in-house developed simulation framework called Chrono. The implementation of the methods and models described herein is available on GitHub as open source for free use, modification, and redistribution, as well as reproducibility studies. |
doi_str_mv | 10.1007/s11044-022-09815-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682370209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682370209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6c564d6ea95f3bbed08fa7ca073df3aaf76f031027e4bcb7e73484c967e32a8f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysZvdY6nVCgUFW_AWstmkbN3d1GQX6b83WsGbp5nD-7wzPAhdU7ilAPIuUgpCEGCMQFnQjLATNKGZ5IRJ9naadl4IkuUCztFFjDsARjNRTtBmHbQZGt9j4_sh-BbXNjbbHjsfsHeOBK9r3PmqaZvhgMfY9Fuse_z6siT3s0WiYtONrf6pcEF39tOH90t05nQb7dXvnKLNw2I9X5LV8-PTfLYihtNyILlJH9W51WXmeFXZGgqnpdEgee241k7mDjgFJq2oTCWt5KIQpsyl5UwXjk_RzbF3H_zHaOOgdn4MfTqpWF4wLoFBmVLsmDLBxxisU_vQdDocFAX1rU8d9amkT_3oUyxB_AjFFO63NvxV_0N9ARJ2c0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682370209</pqid></control><display><type>article</type><title>Traction control design for off-road mobility using an SPH-DAE cosimulation framework</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Wei ; Zhou, Zhenhao ; Chandler, Samuel ; Apostolopoulos, Dimitrios ; Kamrin, Ken ; Serban, Radu ; Negrut, Dan</creator><creatorcontrib>Hu, Wei ; Zhou, Zhenhao ; Chandler, Samuel ; Apostolopoulos, Dimitrios ; Kamrin, Ken ; Serban, Radu ; Negrut, Dan</creatorcontrib><description>We describe an analytical framework implemented in a general-purpose mobility simulation platform for enabling the design of control policies for improved rover mobility in granular terrain environments. We employ a homogenization of the granular material and use an elasto-plastic continuum model to capture the dynamics of the deformable terrain. The solution of the continuum problem is obtained using the smoothed particle hydrodynamics method. The Curiosity rover wheel geometry is defined through a mesh. The interaction between each wheel and the granular terrain is handled via cosimulation using so-called boundary conditions enforcing particles attached to the rover wheel. A traction control algorithm is implemented to reduce wheel slip and battery drain in hill-climbing scenario. Several parametric studies are carried out to assess rover simulation robustness for operation in uphill mobility scenario with different heights and friction coefficients. The analysis is carried out in an in-house developed simulation framework called Chrono. The implementation of the methods and models described herein is available on GitHub as open source for free use, modification, and redistribution, as well as reproducibility studies.</description><identifier>ISSN: 1384-5640</identifier><identifier>EISSN: 1573-272X</identifier><identifier>DOI: 10.1007/s11044-022-09815-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Boundary conditions ; Coefficient of friction ; Continuum modeling ; Control ; Control algorithms ; Control theory ; Curiosity (Mars rover) ; Dynamical Systems ; Electrical Engineering ; Engineering ; Finite element method ; Formability ; Granular materials ; Mechanical Engineering ; Optimization ; Simulation ; Smooth particle hydrodynamics ; Terrain ; Vibration</subject><ispartof>Multibody system dynamics, 2022-06, Vol.55 (1-2), p.165-188</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6c564d6ea95f3bbed08fa7ca073df3aaf76f031027e4bcb7e73484c967e32a8f3</citedby><cites>FETCH-LOGICAL-c319t-6c564d6ea95f3bbed08fa7ca073df3aaf76f031027e4bcb7e73484c967e32a8f3</cites><orcidid>0000-0003-1565-2784 ; 0000-0003-0799-977X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11044-022-09815-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11044-022-09815-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Zhou, Zhenhao</creatorcontrib><creatorcontrib>Chandler, Samuel</creatorcontrib><creatorcontrib>Apostolopoulos, Dimitrios</creatorcontrib><creatorcontrib>Kamrin, Ken</creatorcontrib><creatorcontrib>Serban, Radu</creatorcontrib><creatorcontrib>Negrut, Dan</creatorcontrib><title>Traction control design for off-road mobility using an SPH-DAE cosimulation framework</title><title>Multibody system dynamics</title><addtitle>Multibody Syst Dyn</addtitle><description>We describe an analytical framework implemented in a general-purpose mobility simulation platform for enabling the design of control policies for improved rover mobility in granular terrain environments. We employ a homogenization of the granular material and use an elasto-plastic continuum model to capture the dynamics of the deformable terrain. The solution of the continuum problem is obtained using the smoothed particle hydrodynamics method. The Curiosity rover wheel geometry is defined through a mesh. The interaction between each wheel and the granular terrain is handled via cosimulation using so-called boundary conditions enforcing particles attached to the rover wheel. A traction control algorithm is implemented to reduce wheel slip and battery drain in hill-climbing scenario. Several parametric studies are carried out to assess rover simulation robustness for operation in uphill mobility scenario with different heights and friction coefficients. The analysis is carried out in an in-house developed simulation framework called Chrono. The implementation of the methods and models described herein is available on GitHub as open source for free use, modification, and redistribution, as well as reproducibility studies.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Boundary conditions</subject><subject>Coefficient of friction</subject><subject>Continuum modeling</subject><subject>Control</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Curiosity (Mars rover)</subject><subject>Dynamical Systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Granular materials</subject><subject>Mechanical Engineering</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Smooth particle hydrodynamics</subject><subject>Terrain</subject><subject>Vibration</subject><issn>1384-5640</issn><issn>1573-272X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysZvdY6nVCgUFW_AWstmkbN3d1GQX6b83WsGbp5nD-7wzPAhdU7ilAPIuUgpCEGCMQFnQjLATNKGZ5IRJ9naadl4IkuUCztFFjDsARjNRTtBmHbQZGt9j4_sh-BbXNjbbHjsfsHeOBK9r3PmqaZvhgMfY9Fuse_z6siT3s0WiYtONrf6pcEF39tOH90t05nQb7dXvnKLNw2I9X5LV8-PTfLYihtNyILlJH9W51WXmeFXZGgqnpdEgee241k7mDjgFJq2oTCWt5KIQpsyl5UwXjk_RzbF3H_zHaOOgdn4MfTqpWF4wLoFBmVLsmDLBxxisU_vQdDocFAX1rU8d9amkT_3oUyxB_AjFFO63NvxV_0N9ARJ2c0U</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Hu, Wei</creator><creator>Zhou, Zhenhao</creator><creator>Chandler, Samuel</creator><creator>Apostolopoulos, Dimitrios</creator><creator>Kamrin, Ken</creator><creator>Serban, Radu</creator><creator>Negrut, Dan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1565-2784</orcidid><orcidid>https://orcid.org/0000-0003-0799-977X</orcidid></search><sort><creationdate>20220601</creationdate><title>Traction control design for off-road mobility using an SPH-DAE cosimulation framework</title><author>Hu, Wei ; Zhou, Zhenhao ; Chandler, Samuel ; Apostolopoulos, Dimitrios ; Kamrin, Ken ; Serban, Radu ; Negrut, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6c564d6ea95f3bbed08fa7ca073df3aaf76f031027e4bcb7e73484c967e32a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Boundary conditions</topic><topic>Coefficient of friction</topic><topic>Continuum modeling</topic><topic>Control</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Curiosity (Mars rover)</topic><topic>Dynamical Systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Granular materials</topic><topic>Mechanical Engineering</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Smooth particle hydrodynamics</topic><topic>Terrain</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Zhou, Zhenhao</creatorcontrib><creatorcontrib>Chandler, Samuel</creatorcontrib><creatorcontrib>Apostolopoulos, Dimitrios</creatorcontrib><creatorcontrib>Kamrin, Ken</creatorcontrib><creatorcontrib>Serban, Radu</creatorcontrib><creatorcontrib>Negrut, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Multibody system dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Wei</au><au>Zhou, Zhenhao</au><au>Chandler, Samuel</au><au>Apostolopoulos, Dimitrios</au><au>Kamrin, Ken</au><au>Serban, Radu</au><au>Negrut, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traction control design for off-road mobility using an SPH-DAE cosimulation framework</atitle><jtitle>Multibody system dynamics</jtitle><stitle>Multibody Syst Dyn</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>55</volume><issue>1-2</issue><spage>165</spage><epage>188</epage><pages>165-188</pages><issn>1384-5640</issn><eissn>1573-272X</eissn><abstract>We describe an analytical framework implemented in a general-purpose mobility simulation platform for enabling the design of control policies for improved rover mobility in granular terrain environments. We employ a homogenization of the granular material and use an elasto-plastic continuum model to capture the dynamics of the deformable terrain. The solution of the continuum problem is obtained using the smoothed particle hydrodynamics method. The Curiosity rover wheel geometry is defined through a mesh. The interaction between each wheel and the granular terrain is handled via cosimulation using so-called boundary conditions enforcing particles attached to the rover wheel. A traction control algorithm is implemented to reduce wheel slip and battery drain in hill-climbing scenario. Several parametric studies are carried out to assess rover simulation robustness for operation in uphill mobility scenario with different heights and friction coefficients. The analysis is carried out in an in-house developed simulation framework called Chrono. The implementation of the methods and models described herein is available on GitHub as open source for free use, modification, and redistribution, as well as reproducibility studies.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11044-022-09815-2</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1565-2784</orcidid><orcidid>https://orcid.org/0000-0003-0799-977X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-5640 |
ispartof | Multibody system dynamics, 2022-06, Vol.55 (1-2), p.165-188 |
issn | 1384-5640 1573-272X |
language | eng |
recordid | cdi_proquest_journals_2682370209 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Automotive Engineering Boundary conditions Coefficient of friction Continuum modeling Control Control algorithms Control theory Curiosity (Mars rover) Dynamical Systems Electrical Engineering Engineering Finite element method Formability Granular materials Mechanical Engineering Optimization Simulation Smooth particle hydrodynamics Terrain Vibration |
title | Traction control design for off-road mobility using an SPH-DAE cosimulation framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traction%20control%20design%20for%20off-road%20mobility%20using%20an%20SPH-DAE%20cosimulation%20framework&rft.jtitle=Multibody%20system%20dynamics&rft.au=Hu,%20Wei&rft.date=2022-06-01&rft.volume=55&rft.issue=1-2&rft.spage=165&rft.epage=188&rft.pages=165-188&rft.issn=1384-5640&rft.eissn=1573-272X&rft_id=info:doi/10.1007/s11044-022-09815-2&rft_dat=%3Cproquest_cross%3E2682370209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682370209&rft_id=info:pmid/&rfr_iscdi=true |