Traction control design for off-road mobility using an SPH-DAE cosimulation framework

We describe an analytical framework implemented in a general-purpose mobility simulation platform for enabling the design of control policies for improved rover mobility in granular terrain environments. We employ a homogenization of the granular material and use an elasto-plastic continuum model to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multibody system dynamics 2022-06, Vol.55 (1-2), p.165-188
Hauptverfasser: Hu, Wei, Zhou, Zhenhao, Chandler, Samuel, Apostolopoulos, Dimitrios, Kamrin, Ken, Serban, Radu, Negrut, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 1-2
container_start_page 165
container_title Multibody system dynamics
container_volume 55
creator Hu, Wei
Zhou, Zhenhao
Chandler, Samuel
Apostolopoulos, Dimitrios
Kamrin, Ken
Serban, Radu
Negrut, Dan
description We describe an analytical framework implemented in a general-purpose mobility simulation platform for enabling the design of control policies for improved rover mobility in granular terrain environments. We employ a homogenization of the granular material and use an elasto-plastic continuum model to capture the dynamics of the deformable terrain. The solution of the continuum problem is obtained using the smoothed particle hydrodynamics method. The Curiosity rover wheel geometry is defined through a mesh. The interaction between each wheel and the granular terrain is handled via cosimulation using so-called boundary conditions enforcing particles attached to the rover wheel. A traction control algorithm is implemented to reduce wheel slip and battery drain in hill-climbing scenario. Several parametric studies are carried out to assess rover simulation robustness for operation in uphill mobility scenario with different heights and friction coefficients. The analysis is carried out in an in-house developed simulation framework called Chrono. The implementation of the methods and models described herein is available on GitHub as open source for free use, modification, and redistribution, as well as reproducibility studies.
doi_str_mv 10.1007/s11044-022-09815-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682370209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682370209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6c564d6ea95f3bbed08fa7ca073df3aaf76f031027e4bcb7e73484c967e32a8f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysZvdY6nVCgUFW_AWstmkbN3d1GQX6b83WsGbp5nD-7wzPAhdU7ilAPIuUgpCEGCMQFnQjLATNKGZ5IRJ9naadl4IkuUCztFFjDsARjNRTtBmHbQZGt9j4_sh-BbXNjbbHjsfsHeOBK9r3PmqaZvhgMfY9Fuse_z6siT3s0WiYtONrf6pcEF39tOH90t05nQb7dXvnKLNw2I9X5LV8-PTfLYihtNyILlJH9W51WXmeFXZGgqnpdEgee241k7mDjgFJq2oTCWt5KIQpsyl5UwXjk_RzbF3H_zHaOOgdn4MfTqpWF4wLoFBmVLsmDLBxxisU_vQdDocFAX1rU8d9amkT_3oUyxB_AjFFO63NvxV_0N9ARJ2c0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682370209</pqid></control><display><type>article</type><title>Traction control design for off-road mobility using an SPH-DAE cosimulation framework</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Wei ; Zhou, Zhenhao ; Chandler, Samuel ; Apostolopoulos, Dimitrios ; Kamrin, Ken ; Serban, Radu ; Negrut, Dan</creator><creatorcontrib>Hu, Wei ; Zhou, Zhenhao ; Chandler, Samuel ; Apostolopoulos, Dimitrios ; Kamrin, Ken ; Serban, Radu ; Negrut, Dan</creatorcontrib><description>We describe an analytical framework implemented in a general-purpose mobility simulation platform for enabling the design of control policies for improved rover mobility in granular terrain environments. We employ a homogenization of the granular material and use an elasto-plastic continuum model to capture the dynamics of the deformable terrain. The solution of the continuum problem is obtained using the smoothed particle hydrodynamics method. The Curiosity rover wheel geometry is defined through a mesh. The interaction between each wheel and the granular terrain is handled via cosimulation using so-called boundary conditions enforcing particles attached to the rover wheel. A traction control algorithm is implemented to reduce wheel slip and battery drain in hill-climbing scenario. Several parametric studies are carried out to assess rover simulation robustness for operation in uphill mobility scenario with different heights and friction coefficients. The analysis is carried out in an in-house developed simulation framework called Chrono. The implementation of the methods and models described herein is available on GitHub as open source for free use, modification, and redistribution, as well as reproducibility studies.</description><identifier>ISSN: 1384-5640</identifier><identifier>EISSN: 1573-272X</identifier><identifier>DOI: 10.1007/s11044-022-09815-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Boundary conditions ; Coefficient of friction ; Continuum modeling ; Control ; Control algorithms ; Control theory ; Curiosity (Mars rover) ; Dynamical Systems ; Electrical Engineering ; Engineering ; Finite element method ; Formability ; Granular materials ; Mechanical Engineering ; Optimization ; Simulation ; Smooth particle hydrodynamics ; Terrain ; Vibration</subject><ispartof>Multibody system dynamics, 2022-06, Vol.55 (1-2), p.165-188</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6c564d6ea95f3bbed08fa7ca073df3aaf76f031027e4bcb7e73484c967e32a8f3</citedby><cites>FETCH-LOGICAL-c319t-6c564d6ea95f3bbed08fa7ca073df3aaf76f031027e4bcb7e73484c967e32a8f3</cites><orcidid>0000-0003-1565-2784 ; 0000-0003-0799-977X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11044-022-09815-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11044-022-09815-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Zhou, Zhenhao</creatorcontrib><creatorcontrib>Chandler, Samuel</creatorcontrib><creatorcontrib>Apostolopoulos, Dimitrios</creatorcontrib><creatorcontrib>Kamrin, Ken</creatorcontrib><creatorcontrib>Serban, Radu</creatorcontrib><creatorcontrib>Negrut, Dan</creatorcontrib><title>Traction control design for off-road mobility using an SPH-DAE cosimulation framework</title><title>Multibody system dynamics</title><addtitle>Multibody Syst Dyn</addtitle><description>We describe an analytical framework implemented in a general-purpose mobility simulation platform for enabling the design of control policies for improved rover mobility in granular terrain environments. We employ a homogenization of the granular material and use an elasto-plastic continuum model to capture the dynamics of the deformable terrain. The solution of the continuum problem is obtained using the smoothed particle hydrodynamics method. The Curiosity rover wheel geometry is defined through a mesh. The interaction between each wheel and the granular terrain is handled via cosimulation using so-called boundary conditions enforcing particles attached to the rover wheel. A traction control algorithm is implemented to reduce wheel slip and battery drain in hill-climbing scenario. Several parametric studies are carried out to assess rover simulation robustness for operation in uphill mobility scenario with different heights and friction coefficients. The analysis is carried out in an in-house developed simulation framework called Chrono. The implementation of the methods and models described herein is available on GitHub as open source for free use, modification, and redistribution, as well as reproducibility studies.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Boundary conditions</subject><subject>Coefficient of friction</subject><subject>Continuum modeling</subject><subject>Control</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Curiosity (Mars rover)</subject><subject>Dynamical Systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Granular materials</subject><subject>Mechanical Engineering</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Smooth particle hydrodynamics</subject><subject>Terrain</subject><subject>Vibration</subject><issn>1384-5640</issn><issn>1573-272X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysZvdY6nVCgUFW_AWstmkbN3d1GQX6b83WsGbp5nD-7wzPAhdU7ilAPIuUgpCEGCMQFnQjLATNKGZ5IRJ9naadl4IkuUCztFFjDsARjNRTtBmHbQZGt9j4_sh-BbXNjbbHjsfsHeOBK9r3PmqaZvhgMfY9Fuse_z6siT3s0WiYtONrf6pcEF39tOH90t05nQb7dXvnKLNw2I9X5LV8-PTfLYihtNyILlJH9W51WXmeFXZGgqnpdEgee241k7mDjgFJq2oTCWt5KIQpsyl5UwXjk_RzbF3H_zHaOOgdn4MfTqpWF4wLoFBmVLsmDLBxxisU_vQdDocFAX1rU8d9amkT_3oUyxB_AjFFO63NvxV_0N9ARJ2c0U</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Hu, Wei</creator><creator>Zhou, Zhenhao</creator><creator>Chandler, Samuel</creator><creator>Apostolopoulos, Dimitrios</creator><creator>Kamrin, Ken</creator><creator>Serban, Radu</creator><creator>Negrut, Dan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1565-2784</orcidid><orcidid>https://orcid.org/0000-0003-0799-977X</orcidid></search><sort><creationdate>20220601</creationdate><title>Traction control design for off-road mobility using an SPH-DAE cosimulation framework</title><author>Hu, Wei ; Zhou, Zhenhao ; Chandler, Samuel ; Apostolopoulos, Dimitrios ; Kamrin, Ken ; Serban, Radu ; Negrut, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6c564d6ea95f3bbed08fa7ca073df3aaf76f031027e4bcb7e73484c967e32a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Boundary conditions</topic><topic>Coefficient of friction</topic><topic>Continuum modeling</topic><topic>Control</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Curiosity (Mars rover)</topic><topic>Dynamical Systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Granular materials</topic><topic>Mechanical Engineering</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Smooth particle hydrodynamics</topic><topic>Terrain</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Zhou, Zhenhao</creatorcontrib><creatorcontrib>Chandler, Samuel</creatorcontrib><creatorcontrib>Apostolopoulos, Dimitrios</creatorcontrib><creatorcontrib>Kamrin, Ken</creatorcontrib><creatorcontrib>Serban, Radu</creatorcontrib><creatorcontrib>Negrut, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Multibody system dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Wei</au><au>Zhou, Zhenhao</au><au>Chandler, Samuel</au><au>Apostolopoulos, Dimitrios</au><au>Kamrin, Ken</au><au>Serban, Radu</au><au>Negrut, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traction control design for off-road mobility using an SPH-DAE cosimulation framework</atitle><jtitle>Multibody system dynamics</jtitle><stitle>Multibody Syst Dyn</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>55</volume><issue>1-2</issue><spage>165</spage><epage>188</epage><pages>165-188</pages><issn>1384-5640</issn><eissn>1573-272X</eissn><abstract>We describe an analytical framework implemented in a general-purpose mobility simulation platform for enabling the design of control policies for improved rover mobility in granular terrain environments. We employ a homogenization of the granular material and use an elasto-plastic continuum model to capture the dynamics of the deformable terrain. The solution of the continuum problem is obtained using the smoothed particle hydrodynamics method. The Curiosity rover wheel geometry is defined through a mesh. The interaction between each wheel and the granular terrain is handled via cosimulation using so-called boundary conditions enforcing particles attached to the rover wheel. A traction control algorithm is implemented to reduce wheel slip and battery drain in hill-climbing scenario. Several parametric studies are carried out to assess rover simulation robustness for operation in uphill mobility scenario with different heights and friction coefficients. The analysis is carried out in an in-house developed simulation framework called Chrono. The implementation of the methods and models described herein is available on GitHub as open source for free use, modification, and redistribution, as well as reproducibility studies.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11044-022-09815-2</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1565-2784</orcidid><orcidid>https://orcid.org/0000-0003-0799-977X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1384-5640
ispartof Multibody system dynamics, 2022-06, Vol.55 (1-2), p.165-188
issn 1384-5640
1573-272X
language eng
recordid cdi_proquest_journals_2682370209
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Automotive Engineering
Boundary conditions
Coefficient of friction
Continuum modeling
Control
Control algorithms
Control theory
Curiosity (Mars rover)
Dynamical Systems
Electrical Engineering
Engineering
Finite element method
Formability
Granular materials
Mechanical Engineering
Optimization
Simulation
Smooth particle hydrodynamics
Terrain
Vibration
title Traction control design for off-road mobility using an SPH-DAE cosimulation framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traction%20control%20design%20for%20off-road%20mobility%20using%20an%20SPH-DAE%20cosimulation%20framework&rft.jtitle=Multibody%20system%20dynamics&rft.au=Hu,%20Wei&rft.date=2022-06-01&rft.volume=55&rft.issue=1-2&rft.spage=165&rft.epage=188&rft.pages=165-188&rft.issn=1384-5640&rft.eissn=1573-272X&rft_id=info:doi/10.1007/s11044-022-09815-2&rft_dat=%3Cproquest_cross%3E2682370209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682370209&rft_id=info:pmid/&rfr_iscdi=true