Spatial Positioning Token (SPToken) for Smart Parking
In this paper, we describe an approach to guide drivers searching for a parking space (PS). The proposed system suggests a sequence of routes that drivers should traverse in order to maximise the expected likelihood of finding a PS and minimise the travel distance. This system is built on our recent...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Overko, Roman Ordóñez-Hurtado, Rodrigo Zhuk, Sergiy Shorten, Robert |
description | In this paper, we describe an approach to guide drivers searching for a parking space (PS). The proposed system suggests a sequence of routes that drivers should traverse in order to maximise the expected likelihood of finding a PS and minimise the travel distance. This system is built on our recent architecture SPToken, which combines both Distributed Ledger Technology (DLT) and Reinforcement Learning (RL) to realise a system for the estimation of an unknown distribution without disturbing the environment. For this, we use a number of virtual tokens that are passed from vehicle to vehicle to enable a massively parallelised RL system that estimates the best route for a given origin-destination (OD) pair, using crowdsourced information from participant vehicles. Additionally, a moving window with reward memory mechanism is included to better cope with non-stationary environments. Simulation results are given to illustrate the efficacy of our system. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2682036865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682036865</sourcerecordid><originalsourceid>FETCH-proquest_journals_26820368653</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDS5ILMlMzFEIyC_OLMnMz8vMS1cIyc9OzVPQCA4AMzQV0vKLFIJzE4tKFAISi7KBKngYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IzMLIwNjMwszUmDhVAENCNEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682036865</pqid></control><display><type>article</type><title>Spatial Positioning Token (SPToken) for Smart Parking</title><source>Free E- Journals</source><creator>Overko, Roman ; Ordóñez-Hurtado, Rodrigo ; Zhuk, Sergiy ; Shorten, Robert</creator><creatorcontrib>Overko, Roman ; Ordóñez-Hurtado, Rodrigo ; Zhuk, Sergiy ; Shorten, Robert</creatorcontrib><description>In this paper, we describe an approach to guide drivers searching for a parking space (PS). The proposed system suggests a sequence of routes that drivers should traverse in order to maximise the expected likelihood of finding a PS and minimise the travel distance. This system is built on our recent architecture SPToken, which combines both Distributed Ledger Technology (DLT) and Reinforcement Learning (RL) to realise a system for the estimation of an unknown distribution without disturbing the environment. For this, we use a number of virtual tokens that are passed from vehicle to vehicle to enable a massively parallelised RL system that estimates the best route for a given origin-destination (OD) pair, using crowdsourced information from participant vehicles. Additionally, a moving window with reward memory mechanism is included to better cope with non-stationary environments. Simulation results are given to illustrate the efficacy of our system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Nonstationary environments ; Parking</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Overko, Roman</creatorcontrib><creatorcontrib>Ordóñez-Hurtado, Rodrigo</creatorcontrib><creatorcontrib>Zhuk, Sergiy</creatorcontrib><creatorcontrib>Shorten, Robert</creatorcontrib><title>Spatial Positioning Token (SPToken) for Smart Parking</title><title>arXiv.org</title><description>In this paper, we describe an approach to guide drivers searching for a parking space (PS). The proposed system suggests a sequence of routes that drivers should traverse in order to maximise the expected likelihood of finding a PS and minimise the travel distance. This system is built on our recent architecture SPToken, which combines both Distributed Ledger Technology (DLT) and Reinforcement Learning (RL) to realise a system for the estimation of an unknown distribution without disturbing the environment. For this, we use a number of virtual tokens that are passed from vehicle to vehicle to enable a massively parallelised RL system that estimates the best route for a given origin-destination (OD) pair, using crowdsourced information from participant vehicles. Additionally, a moving window with reward memory mechanism is included to better cope with non-stationary environments. Simulation results are given to illustrate the efficacy of our system.</description><subject>Nonstationary environments</subject><subject>Parking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDS5ILMlMzFEIyC_OLMnMz8vMS1cIyc9OzVPQCA4AMzQV0vKLFIJzE4tKFAISi7KBKngYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IzMLIwNjMwszUmDhVAENCNEc</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>Overko, Roman</creator><creator>Ordóñez-Hurtado, Rodrigo</creator><creator>Zhuk, Sergiy</creator><creator>Shorten, Robert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220628</creationdate><title>Spatial Positioning Token (SPToken) for Smart Parking</title><author>Overko, Roman ; Ordóñez-Hurtado, Rodrigo ; Zhuk, Sergiy ; Shorten, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26820368653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Nonstationary environments</topic><topic>Parking</topic><toplevel>online_resources</toplevel><creatorcontrib>Overko, Roman</creatorcontrib><creatorcontrib>Ordóñez-Hurtado, Rodrigo</creatorcontrib><creatorcontrib>Zhuk, Sergiy</creatorcontrib><creatorcontrib>Shorten, Robert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Overko, Roman</au><au>Ordóñez-Hurtado, Rodrigo</au><au>Zhuk, Sergiy</au><au>Shorten, Robert</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spatial Positioning Token (SPToken) for Smart Parking</atitle><jtitle>arXiv.org</jtitle><date>2022-06-28</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this paper, we describe an approach to guide drivers searching for a parking space (PS). The proposed system suggests a sequence of routes that drivers should traverse in order to maximise the expected likelihood of finding a PS and minimise the travel distance. This system is built on our recent architecture SPToken, which combines both Distributed Ledger Technology (DLT) and Reinforcement Learning (RL) to realise a system for the estimation of an unknown distribution without disturbing the environment. For this, we use a number of virtual tokens that are passed from vehicle to vehicle to enable a massively parallelised RL system that estimates the best route for a given origin-destination (OD) pair, using crowdsourced information from participant vehicles. Additionally, a moving window with reward memory mechanism is included to better cope with non-stationary environments. Simulation results are given to illustrate the efficacy of our system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2682036865 |
source | Free E- Journals |
subjects | Nonstationary environments Parking |
title | Spatial Positioning Token (SPToken) for Smart Parking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spatial%20Positioning%20Token%20(SPToken)%20for%20Smart%20Parking&rft.jtitle=arXiv.org&rft.au=Overko,%20Roman&rft.date=2022-06-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2682036865%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682036865&rft_id=info:pmid/&rfr_iscdi=true |