A Numerical Method for Hedging Bermudan Options under Model Uncertainty

Model uncertainty has recently been receiving more attention than risk. This study proposes an effective computational framework to derive optimal strategies for obtaining the upper and lower bounds of Bermudan-style options in the presence of model uncertainty. The optimal hedging strategy under mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology and computing in applied probability 2022-06, Vol.24 (2), p.893-916
1. Verfasser: Imai, Junichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 916
container_issue 2
container_start_page 893
container_title Methodology and computing in applied probability
container_volume 24
creator Imai, Junichi
description Model uncertainty has recently been receiving more attention than risk. This study proposes an effective computational framework to derive optimal strategies for obtaining the upper and lower bounds of Bermudan-style options in the presence of model uncertainty. The optimal hedging strategy under model uncertainty can be formulated as a solution of a minimax problem. We employ approximate dynamic programming and propose an algorithm for effectively solving the minimax problem. This study considers a geometric Brownian motion and an exponential generalized hyperbolic Lévy process as reference models. To take model uncertainty into consideration, we consider a set of equivalent probability measures via an Esscher or a class-preserving transform. Using numerical examples, we discuss the effects of model uncertainty on the size of tracking errors, the hedge portfolio, the possibility of early exercise and positions of options. In addition to investors’ optimal strategies, the study examines Nature’s optimal choice for equivalent probability measures. We find several notable phenomena that occur because of the existence of model uncertainty. We further examine the effects of different types of model uncertainty on option values and optimal hedging strategies.
doi_str_mv 10.1007/s11009-021-09901-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682014760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682014760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-8e74b9b8f9a5be174833701dfccfdb2321cc22439a99f50297b61550400dd9a33</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEuXjDzBZYjY823Ecj6WCFqmlC50tx3ZKqtYpdjL032MIEhvTfcO590kHoTsKDxRAPiaaQxFglIBSQEl5hiZUSE6kpPw837ySRFQFvURXKe0gk4IXEzSf4rfh4GNrzR6vfP_ROdx0ES-827Zhi598PAzOBLw-9m0XEh6C8xGvOuf3eBOsj71pQ3-6QReN2Sd_-5vXaPPy_D5bkOV6_jqbLonlVPSk8rKoVV01yojaU1lUnEugrrG2cTXjjFrLWMGVUaoRwJSsSyoEFADOKcP5Nbofd4-x-xx86vWuG2LILzUrKwa0kCVkio2UjV1K0Tf6GNuDiSdNQX8L06MwnTXoH2G6zCU-llKGw9bHv-l_Wl9r6myM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682014760</pqid></control><display><type>article</type><title>A Numerical Method for Hedging Bermudan Options under Model Uncertainty</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Imai, Junichi</creator><creatorcontrib>Imai, Junichi</creatorcontrib><description>Model uncertainty has recently been receiving more attention than risk. This study proposes an effective computational framework to derive optimal strategies for obtaining the upper and lower bounds of Bermudan-style options in the presence of model uncertainty. The optimal hedging strategy under model uncertainty can be formulated as a solution of a minimax problem. We employ approximate dynamic programming and propose an algorithm for effectively solving the minimax problem. This study considers a geometric Brownian motion and an exponential generalized hyperbolic Lévy process as reference models. To take model uncertainty into consideration, we consider a set of equivalent probability measures via an Esscher or a class-preserving transform. Using numerical examples, we discuss the effects of model uncertainty on the size of tracking errors, the hedge portfolio, the possibility of early exercise and positions of options. In addition to investors’ optimal strategies, the study examines Nature’s optimal choice for equivalent probability measures. We find several notable phenomena that occur because of the existence of model uncertainty. We further examine the effects of different types of model uncertainty on option values and optimal hedging strategies.</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-021-09901-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Brownian motion ; Business and Management ; Dynamic programming ; Economics ; Electrical Engineering ; Entropy ; Equivalence ; Hedging ; Life Sciences ; Lower bounds ; Mathematical models ; Mathematics and Statistics ; Minimax technique ; Numerical methods ; Statistics ; Stochastic processes ; Tracking errors ; Uncertainty</subject><ispartof>Methodology and computing in applied probability, 2022-06, Vol.24 (2), p.893-916</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-8e74b9b8f9a5be174833701dfccfdb2321cc22439a99f50297b61550400dd9a33</citedby><cites>FETCH-LOGICAL-c315t-8e74b9b8f9a5be174833701dfccfdb2321cc22439a99f50297b61550400dd9a33</cites><orcidid>0000-0002-2020-0777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11009-021-09901-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11009-021-09901-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Imai, Junichi</creatorcontrib><title>A Numerical Method for Hedging Bermudan Options under Model Uncertainty</title><title>Methodology and computing in applied probability</title><addtitle>Methodol Comput Appl Probab</addtitle><description>Model uncertainty has recently been receiving more attention than risk. This study proposes an effective computational framework to derive optimal strategies for obtaining the upper and lower bounds of Bermudan-style options in the presence of model uncertainty. The optimal hedging strategy under model uncertainty can be formulated as a solution of a minimax problem. We employ approximate dynamic programming and propose an algorithm for effectively solving the minimax problem. This study considers a geometric Brownian motion and an exponential generalized hyperbolic Lévy process as reference models. To take model uncertainty into consideration, we consider a set of equivalent probability measures via an Esscher or a class-preserving transform. Using numerical examples, we discuss the effects of model uncertainty on the size of tracking errors, the hedge portfolio, the possibility of early exercise and positions of options. In addition to investors’ optimal strategies, the study examines Nature’s optimal choice for equivalent probability measures. We find several notable phenomena that occur because of the existence of model uncertainty. We further examine the effects of different types of model uncertainty on option values and optimal hedging strategies.</description><subject>Algorithms</subject><subject>Brownian motion</subject><subject>Business and Management</subject><subject>Dynamic programming</subject><subject>Economics</subject><subject>Electrical Engineering</subject><subject>Entropy</subject><subject>Equivalence</subject><subject>Hedging</subject><subject>Life Sciences</subject><subject>Lower bounds</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Minimax technique</subject><subject>Numerical methods</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAURS0EEuXjDzBZYjY823Ecj6WCFqmlC50tx3ZKqtYpdjL032MIEhvTfcO590kHoTsKDxRAPiaaQxFglIBSQEl5hiZUSE6kpPw837ySRFQFvURXKe0gk4IXEzSf4rfh4GNrzR6vfP_ROdx0ES-827Zhi598PAzOBLw-9m0XEh6C8xGvOuf3eBOsj71pQ3-6QReN2Sd_-5vXaPPy_D5bkOV6_jqbLonlVPSk8rKoVV01yojaU1lUnEugrrG2cTXjjFrLWMGVUaoRwJSsSyoEFADOKcP5Nbofd4-x-xx86vWuG2LILzUrKwa0kCVkio2UjV1K0Tf6GNuDiSdNQX8L06MwnTXoH2G6zCU-llKGw9bHv-l_Wl9r6myM</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Imai, Junichi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2020-0777</orcidid></search><sort><creationdate>20220601</creationdate><title>A Numerical Method for Hedging Bermudan Options under Model Uncertainty</title><author>Imai, Junichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-8e74b9b8f9a5be174833701dfccfdb2321cc22439a99f50297b61550400dd9a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Brownian motion</topic><topic>Business and Management</topic><topic>Dynamic programming</topic><topic>Economics</topic><topic>Electrical Engineering</topic><topic>Entropy</topic><topic>Equivalence</topic><topic>Hedging</topic><topic>Life Sciences</topic><topic>Lower bounds</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Minimax technique</topic><topic>Numerical methods</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imai, Junichi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imai, Junichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Method for Hedging Bermudan Options under Model Uncertainty</atitle><jtitle>Methodology and computing in applied probability</jtitle><stitle>Methodol Comput Appl Probab</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>24</volume><issue>2</issue><spage>893</spage><epage>916</epage><pages>893-916</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>Model uncertainty has recently been receiving more attention than risk. This study proposes an effective computational framework to derive optimal strategies for obtaining the upper and lower bounds of Bermudan-style options in the presence of model uncertainty. The optimal hedging strategy under model uncertainty can be formulated as a solution of a minimax problem. We employ approximate dynamic programming and propose an algorithm for effectively solving the minimax problem. This study considers a geometric Brownian motion and an exponential generalized hyperbolic Lévy process as reference models. To take model uncertainty into consideration, we consider a set of equivalent probability measures via an Esscher or a class-preserving transform. Using numerical examples, we discuss the effects of model uncertainty on the size of tracking errors, the hedge portfolio, the possibility of early exercise and positions of options. In addition to investors’ optimal strategies, the study examines Nature’s optimal choice for equivalent probability measures. We find several notable phenomena that occur because of the existence of model uncertainty. We further examine the effects of different types of model uncertainty on option values and optimal hedging strategies.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11009-021-09901-6</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2020-0777</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1387-5841
ispartof Methodology and computing in applied probability, 2022-06, Vol.24 (2), p.893-916
issn 1387-5841
1573-7713
language eng
recordid cdi_proquest_journals_2682014760
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Brownian motion
Business and Management
Dynamic programming
Economics
Electrical Engineering
Entropy
Equivalence
Hedging
Life Sciences
Lower bounds
Mathematical models
Mathematics and Statistics
Minimax technique
Numerical methods
Statistics
Stochastic processes
Tracking errors
Uncertainty
title A Numerical Method for Hedging Bermudan Options under Model Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Method%20for%20Hedging%20Bermudan%20Options%20under%20Model%20Uncertainty&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=Imai,%20Junichi&rft.date=2022-06-01&rft.volume=24&rft.issue=2&rft.spage=893&rft.epage=916&rft.pages=893-916&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-021-09901-6&rft_dat=%3Cproquest_cross%3E2682014760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682014760&rft_id=info:pmid/&rfr_iscdi=true