A Numerical Method for Hedging Bermudan Options under Model Uncertainty
Model uncertainty has recently been receiving more attention than risk. This study proposes an effective computational framework to derive optimal strategies for obtaining the upper and lower bounds of Bermudan-style options in the presence of model uncertainty. The optimal hedging strategy under mo...
Gespeichert in:
Veröffentlicht in: | Methodology and computing in applied probability 2022-06, Vol.24 (2), p.893-916 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 916 |
---|---|
container_issue | 2 |
container_start_page | 893 |
container_title | Methodology and computing in applied probability |
container_volume | 24 |
creator | Imai, Junichi |
description | Model uncertainty has recently been receiving more attention than risk. This study proposes an effective computational framework to derive optimal strategies for obtaining the upper and lower bounds of Bermudan-style options in the presence of model uncertainty. The optimal hedging strategy under model uncertainty can be formulated as a solution of a minimax problem. We employ approximate dynamic programming and propose an algorithm for effectively solving the minimax problem. This study considers a geometric Brownian motion and an exponential generalized hyperbolic Lévy process as reference models. To take model uncertainty into consideration, we consider a set of equivalent probability measures via an Esscher or a class-preserving transform. Using numerical examples, we discuss the effects of model uncertainty on the size of tracking errors, the hedge portfolio, the possibility of early exercise and positions of options. In addition to investors’ optimal strategies, the study examines Nature’s optimal choice for equivalent probability measures. We find several notable phenomena that occur because of the existence of model uncertainty. We further examine the effects of different types of model uncertainty on option values and optimal hedging strategies. |
doi_str_mv | 10.1007/s11009-021-09901-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682014760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682014760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-8e74b9b8f9a5be174833701dfccfdb2321cc22439a99f50297b61550400dd9a33</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEuXjDzBZYjY823Ecj6WCFqmlC50tx3ZKqtYpdjL032MIEhvTfcO590kHoTsKDxRAPiaaQxFglIBSQEl5hiZUSE6kpPw837ySRFQFvURXKe0gk4IXEzSf4rfh4GNrzR6vfP_ROdx0ES-827Zhi598PAzOBLw-9m0XEh6C8xGvOuf3eBOsj71pQ3-6QReN2Sd_-5vXaPPy_D5bkOV6_jqbLonlVPSk8rKoVV01yojaU1lUnEugrrG2cTXjjFrLWMGVUaoRwJSsSyoEFADOKcP5Nbofd4-x-xx86vWuG2LILzUrKwa0kCVkio2UjV1K0Tf6GNuDiSdNQX8L06MwnTXoH2G6zCU-llKGw9bHv-l_Wl9r6myM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682014760</pqid></control><display><type>article</type><title>A Numerical Method for Hedging Bermudan Options under Model Uncertainty</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Imai, Junichi</creator><creatorcontrib>Imai, Junichi</creatorcontrib><description>Model uncertainty has recently been receiving more attention than risk. This study proposes an effective computational framework to derive optimal strategies for obtaining the upper and lower bounds of Bermudan-style options in the presence of model uncertainty. The optimal hedging strategy under model uncertainty can be formulated as a solution of a minimax problem. We employ approximate dynamic programming and propose an algorithm for effectively solving the minimax problem. This study considers a geometric Brownian motion and an exponential generalized hyperbolic Lévy process as reference models. To take model uncertainty into consideration, we consider a set of equivalent probability measures via an Esscher or a class-preserving transform. Using numerical examples, we discuss the effects of model uncertainty on the size of tracking errors, the hedge portfolio, the possibility of early exercise and positions of options. In addition to investors’ optimal strategies, the study examines Nature’s optimal choice for equivalent probability measures. We find several notable phenomena that occur because of the existence of model uncertainty. We further examine the effects of different types of model uncertainty on option values and optimal hedging strategies.</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-021-09901-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Brownian motion ; Business and Management ; Dynamic programming ; Economics ; Electrical Engineering ; Entropy ; Equivalence ; Hedging ; Life Sciences ; Lower bounds ; Mathematical models ; Mathematics and Statistics ; Minimax technique ; Numerical methods ; Statistics ; Stochastic processes ; Tracking errors ; Uncertainty</subject><ispartof>Methodology and computing in applied probability, 2022-06, Vol.24 (2), p.893-916</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-8e74b9b8f9a5be174833701dfccfdb2321cc22439a99f50297b61550400dd9a33</citedby><cites>FETCH-LOGICAL-c315t-8e74b9b8f9a5be174833701dfccfdb2321cc22439a99f50297b61550400dd9a33</cites><orcidid>0000-0002-2020-0777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11009-021-09901-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11009-021-09901-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Imai, Junichi</creatorcontrib><title>A Numerical Method for Hedging Bermudan Options under Model Uncertainty</title><title>Methodology and computing in applied probability</title><addtitle>Methodol Comput Appl Probab</addtitle><description>Model uncertainty has recently been receiving more attention than risk. This study proposes an effective computational framework to derive optimal strategies for obtaining the upper and lower bounds of Bermudan-style options in the presence of model uncertainty. The optimal hedging strategy under model uncertainty can be formulated as a solution of a minimax problem. We employ approximate dynamic programming and propose an algorithm for effectively solving the minimax problem. This study considers a geometric Brownian motion and an exponential generalized hyperbolic Lévy process as reference models. To take model uncertainty into consideration, we consider a set of equivalent probability measures via an Esscher or a class-preserving transform. Using numerical examples, we discuss the effects of model uncertainty on the size of tracking errors, the hedge portfolio, the possibility of early exercise and positions of options. In addition to investors’ optimal strategies, the study examines Nature’s optimal choice for equivalent probability measures. We find several notable phenomena that occur because of the existence of model uncertainty. We further examine the effects of different types of model uncertainty on option values and optimal hedging strategies.</description><subject>Algorithms</subject><subject>Brownian motion</subject><subject>Business and Management</subject><subject>Dynamic programming</subject><subject>Economics</subject><subject>Electrical Engineering</subject><subject>Entropy</subject><subject>Equivalence</subject><subject>Hedging</subject><subject>Life Sciences</subject><subject>Lower bounds</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Minimax technique</subject><subject>Numerical methods</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAURS0EEuXjDzBZYjY823Ecj6WCFqmlC50tx3ZKqtYpdjL032MIEhvTfcO590kHoTsKDxRAPiaaQxFglIBSQEl5hiZUSE6kpPw837ySRFQFvURXKe0gk4IXEzSf4rfh4GNrzR6vfP_ROdx0ES-827Zhi598PAzOBLw-9m0XEh6C8xGvOuf3eBOsj71pQ3-6QReN2Sd_-5vXaPPy_D5bkOV6_jqbLonlVPSk8rKoVV01yojaU1lUnEugrrG2cTXjjFrLWMGVUaoRwJSsSyoEFADOKcP5Nbofd4-x-xx86vWuG2LILzUrKwa0kCVkio2UjV1K0Tf6GNuDiSdNQX8L06MwnTXoH2G6zCU-llKGw9bHv-l_Wl9r6myM</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Imai, Junichi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2020-0777</orcidid></search><sort><creationdate>20220601</creationdate><title>A Numerical Method for Hedging Bermudan Options under Model Uncertainty</title><author>Imai, Junichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-8e74b9b8f9a5be174833701dfccfdb2321cc22439a99f50297b61550400dd9a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Brownian motion</topic><topic>Business and Management</topic><topic>Dynamic programming</topic><topic>Economics</topic><topic>Electrical Engineering</topic><topic>Entropy</topic><topic>Equivalence</topic><topic>Hedging</topic><topic>Life Sciences</topic><topic>Lower bounds</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Minimax technique</topic><topic>Numerical methods</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imai, Junichi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imai, Junichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Method for Hedging Bermudan Options under Model Uncertainty</atitle><jtitle>Methodology and computing in applied probability</jtitle><stitle>Methodol Comput Appl Probab</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>24</volume><issue>2</issue><spage>893</spage><epage>916</epage><pages>893-916</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>Model uncertainty has recently been receiving more attention than risk. This study proposes an effective computational framework to derive optimal strategies for obtaining the upper and lower bounds of Bermudan-style options in the presence of model uncertainty. The optimal hedging strategy under model uncertainty can be formulated as a solution of a minimax problem. We employ approximate dynamic programming and propose an algorithm for effectively solving the minimax problem. This study considers a geometric Brownian motion and an exponential generalized hyperbolic Lévy process as reference models. To take model uncertainty into consideration, we consider a set of equivalent probability measures via an Esscher or a class-preserving transform. Using numerical examples, we discuss the effects of model uncertainty on the size of tracking errors, the hedge portfolio, the possibility of early exercise and positions of options. In addition to investors’ optimal strategies, the study examines Nature’s optimal choice for equivalent probability measures. We find several notable phenomena that occur because of the existence of model uncertainty. We further examine the effects of different types of model uncertainty on option values and optimal hedging strategies.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11009-021-09901-6</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2020-0777</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-5841 |
ispartof | Methodology and computing in applied probability, 2022-06, Vol.24 (2), p.893-916 |
issn | 1387-5841 1573-7713 |
language | eng |
recordid | cdi_proquest_journals_2682014760 |
source | EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Brownian motion Business and Management Dynamic programming Economics Electrical Engineering Entropy Equivalence Hedging Life Sciences Lower bounds Mathematical models Mathematics and Statistics Minimax technique Numerical methods Statistics Stochastic processes Tracking errors Uncertainty |
title | A Numerical Method for Hedging Bermudan Options under Model Uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Method%20for%20Hedging%20Bermudan%20Options%20under%20Model%20Uncertainty&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=Imai,%20Junichi&rft.date=2022-06-01&rft.volume=24&rft.issue=2&rft.spage=893&rft.epage=916&rft.pages=893-916&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-021-09901-6&rft_dat=%3Cproquest_cross%3E2682014760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682014760&rft_id=info:pmid/&rfr_iscdi=true |