Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA
With the increasing demand for bulk data transmission, offloading techniques to transmit data via mobile physical media is becoming common increasingly. The development of the Internet of Vehicles (IoV) provides new solutions for data offloading, as the IoV brings massive storage and transmission ca...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on network science and engineering 2022-07, Vol.9 (4), p.2330-2340 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2340 |
---|---|
container_issue | 4 |
container_start_page | 2330 |
container_title | IEEE transactions on network science and engineering |
container_volume | 9 |
creator | Zhao, Ming Li, Jiahua Tang, Fengxiao Asif, Sohaib Zhu, Yusen |
description | With the increasing demand for bulk data transmission, offloading techniques to transmit data via mobile physical media is becoming common increasingly. The development of the Internet of Vehicles (IoV) provides new solutions for data offloading, as the IoV brings massive storage and transmission capabilities. However, the impact caused by the mobility of physical media brings a challenge to delay optimization and route selection of data offloading. In this paper, we consider a data transmission network architecture based on the Manhattan mobility model. The vehicle carries data on a fixed route in this scenario, enabling data transmission between geographically distant data centers. In order to reduce the total transmission time and reduce the impact of retransmission, we consider the temporal convolutional network (TCN) model to predict the allocation of the weight of delay. Next, we solve the optimal routing problem using a genetic algorithm based on a reinforcement learning mechanism (RLGA) to pre-allocate resources for offloading requests. The experimental results show that the proposed data offloading method can reduce the load on the cellular network and decrease the data transmission time, average transmission hops, and retransmission times compared with existing methods. |
doi_str_mv | 10.1109/TNSE.2022.3163193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2681955327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9744566</ieee_id><sourcerecordid>2681955327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-f6ae2502de61daba1bfdb50eb0be844c0360adf2f569c4936c5a35c5721b714a3</originalsourceid><addsrcrecordid>eNpFkFFLwzAQx4MoOOY-gPgS8LkzySXp4tuccw6qkznFt5C2iXbMZiad4Le3ZUOf7uD-vzvuh9A5JUNKibpaPT5Ph4wwNgQqgSo4Qj0GwBNg6u2461macKnSUzSIcU0IoWwkAaCHssyaUFf1O74x0Zb4wcRYfVt8axqDF85tvCm7aVXj5sPiuX-9xku_a_4JX-OnYJNlNhufoRNnNtEODrWPXu6mq8l9ki1m88k4SwrGoEmcNJYJwkoraWlyQ3NX5oLYnOR2xHlBQBJTOuaEVAVXIAthQBQiZTRPKTfQR5f7vdvgv3Y2Nnrtd6FuT2omR1QJ0T7cpug-VQQfY7BOb0P1acKPpkR33nTnTXfe9MFby1zsmcpa-5dXKedCSvgFnFRnNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681955327</pqid></control><display><type>article</type><title>Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Ming ; Li, Jiahua ; Tang, Fengxiao ; Asif, Sohaib ; Zhu, Yusen</creator><creatorcontrib>Zhao, Ming ; Li, Jiahua ; Tang, Fengxiao ; Asif, Sohaib ; Zhu, Yusen</creatorcontrib><description>With the increasing demand for bulk data transmission, offloading techniques to transmit data via mobile physical media is becoming common increasingly. The development of the Internet of Vehicles (IoV) provides new solutions for data offloading, as the IoV brings massive storage and transmission capabilities. However, the impact caused by the mobility of physical media brings a challenge to delay optimization and route selection of data offloading. In this paper, we consider a data transmission network architecture based on the Manhattan mobility model. The vehicle carries data on a fixed route in this scenario, enabling data transmission between geographically distant data centers. In order to reduce the total transmission time and reduce the impact of retransmission, we consider the temporal convolutional network (TCN) model to predict the allocation of the weight of delay. Next, we solve the optimal routing problem using a genetic algorithm based on a reinforcement learning mechanism (RLGA) to pre-allocate resources for offloading requests. The experimental results show that the proposed data offloading method can reduce the load on the cellular network and decrease the data transmission time, average transmission hops, and retransmission times compared with existing methods.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2022.3163193</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>bulk data transmission ; Cellular communication ; Computer architecture ; Data centers ; Data communication ; Data models ; Data offloading ; Data transmission ; Delays ; genetic algorithm (GA) ; Genetic algorithms ; Internet of Vehicles ; Machine learning ; manhattan mobility model ; Optimization ; Predictive models ; reinforcement learning (RL) ; Roads ; Route selection ; Routing ; temporal convolutional network (TCN)</subject><ispartof>IEEE transactions on network science and engineering, 2022-07, Vol.9 (4), p.2330-2340</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-f6ae2502de61daba1bfdb50eb0be844c0360adf2f569c4936c5a35c5721b714a3</citedby><cites>FETCH-LOGICAL-c223t-f6ae2502de61daba1bfdb50eb0be844c0360adf2f569c4936c5a35c5721b714a3</cites><orcidid>0000-0003-2414-4802 ; 0000-0002-8058-352X ; 0000-0003-2317-5359 ; 0000-0003-0707-470X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9744566$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9744566$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Li, Jiahua</creatorcontrib><creatorcontrib>Tang, Fengxiao</creatorcontrib><creatorcontrib>Asif, Sohaib</creatorcontrib><creatorcontrib>Zhu, Yusen</creatorcontrib><title>Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>With the increasing demand for bulk data transmission, offloading techniques to transmit data via mobile physical media is becoming common increasingly. The development of the Internet of Vehicles (IoV) provides new solutions for data offloading, as the IoV brings massive storage and transmission capabilities. However, the impact caused by the mobility of physical media brings a challenge to delay optimization and route selection of data offloading. In this paper, we consider a data transmission network architecture based on the Manhattan mobility model. The vehicle carries data on a fixed route in this scenario, enabling data transmission between geographically distant data centers. In order to reduce the total transmission time and reduce the impact of retransmission, we consider the temporal convolutional network (TCN) model to predict the allocation of the weight of delay. Next, we solve the optimal routing problem using a genetic algorithm based on a reinforcement learning mechanism (RLGA) to pre-allocate resources for offloading requests. The experimental results show that the proposed data offloading method can reduce the load on the cellular network and decrease the data transmission time, average transmission hops, and retransmission times compared with existing methods.</description><subject>bulk data transmission</subject><subject>Cellular communication</subject><subject>Computer architecture</subject><subject>Data centers</subject><subject>Data communication</subject><subject>Data models</subject><subject>Data offloading</subject><subject>Data transmission</subject><subject>Delays</subject><subject>genetic algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Internet of Vehicles</subject><subject>Machine learning</subject><subject>manhattan mobility model</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>reinforcement learning (RL)</subject><subject>Roads</subject><subject>Route selection</subject><subject>Routing</subject><subject>temporal convolutional network (TCN)</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkFFLwzAQx4MoOOY-gPgS8LkzySXp4tuccw6qkznFt5C2iXbMZiad4Le3ZUOf7uD-vzvuh9A5JUNKibpaPT5Ph4wwNgQqgSo4Qj0GwBNg6u2461macKnSUzSIcU0IoWwkAaCHssyaUFf1O74x0Zb4wcRYfVt8axqDF85tvCm7aVXj5sPiuX-9xku_a_4JX-OnYJNlNhufoRNnNtEODrWPXu6mq8l9ki1m88k4SwrGoEmcNJYJwkoraWlyQ3NX5oLYnOR2xHlBQBJTOuaEVAVXIAthQBQiZTRPKTfQR5f7vdvgv3Y2Nnrtd6FuT2omR1QJ0T7cpug-VQQfY7BOb0P1acKPpkR33nTnTXfe9MFby1zsmcpa-5dXKedCSvgFnFRnNQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zhao, Ming</creator><creator>Li, Jiahua</creator><creator>Tang, Fengxiao</creator><creator>Asif, Sohaib</creator><creator>Zhu, Yusen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2414-4802</orcidid><orcidid>https://orcid.org/0000-0002-8058-352X</orcidid><orcidid>https://orcid.org/0000-0003-2317-5359</orcidid><orcidid>https://orcid.org/0000-0003-0707-470X</orcidid></search><sort><creationdate>20220701</creationdate><title>Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA</title><author>Zhao, Ming ; Li, Jiahua ; Tang, Fengxiao ; Asif, Sohaib ; Zhu, Yusen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-f6ae2502de61daba1bfdb50eb0be844c0360adf2f569c4936c5a35c5721b714a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bulk data transmission</topic><topic>Cellular communication</topic><topic>Computer architecture</topic><topic>Data centers</topic><topic>Data communication</topic><topic>Data models</topic><topic>Data offloading</topic><topic>Data transmission</topic><topic>Delays</topic><topic>genetic algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Internet of Vehicles</topic><topic>Machine learning</topic><topic>manhattan mobility model</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>reinforcement learning (RL)</topic><topic>Roads</topic><topic>Route selection</topic><topic>Routing</topic><topic>temporal convolutional network (TCN)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Li, Jiahua</creatorcontrib><creatorcontrib>Tang, Fengxiao</creatorcontrib><creatorcontrib>Asif, Sohaib</creatorcontrib><creatorcontrib>Zhu, Yusen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Ming</au><au>Li, Jiahua</au><au>Tang, Fengxiao</au><au>Asif, Sohaib</au><au>Zhu, Yusen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>9</volume><issue>4</issue><spage>2330</spage><epage>2340</epage><pages>2330-2340</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>With the increasing demand for bulk data transmission, offloading techniques to transmit data via mobile physical media is becoming common increasingly. The development of the Internet of Vehicles (IoV) provides new solutions for data offloading, as the IoV brings massive storage and transmission capabilities. However, the impact caused by the mobility of physical media brings a challenge to delay optimization and route selection of data offloading. In this paper, we consider a data transmission network architecture based on the Manhattan mobility model. The vehicle carries data on a fixed route in this scenario, enabling data transmission between geographically distant data centers. In order to reduce the total transmission time and reduce the impact of retransmission, we consider the temporal convolutional network (TCN) model to predict the allocation of the weight of delay. Next, we solve the optimal routing problem using a genetic algorithm based on a reinforcement learning mechanism (RLGA) to pre-allocate resources for offloading requests. The experimental results show that the proposed data offloading method can reduce the load on the cellular network and decrease the data transmission time, average transmission hops, and retransmission times compared with existing methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2022.3163193</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2414-4802</orcidid><orcidid>https://orcid.org/0000-0002-8058-352X</orcidid><orcidid>https://orcid.org/0000-0003-2317-5359</orcidid><orcidid>https://orcid.org/0000-0003-0707-470X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4697 |
ispartof | IEEE transactions on network science and engineering, 2022-07, Vol.9 (4), p.2330-2340 |
issn | 2327-4697 2334-329X |
language | eng |
recordid | cdi_proquest_journals_2681955327 |
source | IEEE Electronic Library (IEL) |
subjects | bulk data transmission Cellular communication Computer architecture Data centers Data communication Data models Data offloading Data transmission Delays genetic algorithm (GA) Genetic algorithms Internet of Vehicles Machine learning manhattan mobility model Optimization Predictive models reinforcement learning (RL) Roads Route selection Routing temporal convolutional network (TCN) |
title | Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Based%20Massive%20Data%20Offloading%20in%20the%20IoV:%20Routing%20Based%20on%20Pre-RLGA&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Zhao,%20Ming&rft.date=2022-07-01&rft.volume=9&rft.issue=4&rft.spage=2330&rft.epage=2340&rft.pages=2330-2340&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2022.3163193&rft_dat=%3Cproquest_RIE%3E2681955327%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681955327&rft_id=info:pmid/&rft_ieee_id=9744566&rfr_iscdi=true |