Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA

With the increasing demand for bulk data transmission, offloading techniques to transmit data via mobile physical media is becoming common increasingly. The development of the Internet of Vehicles (IoV) provides new solutions for data offloading, as the IoV brings massive storage and transmission ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on network science and engineering 2022-07, Vol.9 (4), p.2330-2340
Hauptverfasser: Zhao, Ming, Li, Jiahua, Tang, Fengxiao, Asif, Sohaib, Zhu, Yusen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2340
container_issue 4
container_start_page 2330
container_title IEEE transactions on network science and engineering
container_volume 9
creator Zhao, Ming
Li, Jiahua
Tang, Fengxiao
Asif, Sohaib
Zhu, Yusen
description With the increasing demand for bulk data transmission, offloading techniques to transmit data via mobile physical media is becoming common increasingly. The development of the Internet of Vehicles (IoV) provides new solutions for data offloading, as the IoV brings massive storage and transmission capabilities. However, the impact caused by the mobility of physical media brings a challenge to delay optimization and route selection of data offloading. In this paper, we consider a data transmission network architecture based on the Manhattan mobility model. The vehicle carries data on a fixed route in this scenario, enabling data transmission between geographically distant data centers. In order to reduce the total transmission time and reduce the impact of retransmission, we consider the temporal convolutional network (TCN) model to predict the allocation of the weight of delay. Next, we solve the optimal routing problem using a genetic algorithm based on a reinforcement learning mechanism (RLGA) to pre-allocate resources for offloading requests. The experimental results show that the proposed data offloading method can reduce the load on the cellular network and decrease the data transmission time, average transmission hops, and retransmission times compared with existing methods.
doi_str_mv 10.1109/TNSE.2022.3163193
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2681955327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9744566</ieee_id><sourcerecordid>2681955327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-f6ae2502de61daba1bfdb50eb0be844c0360adf2f569c4936c5a35c5721b714a3</originalsourceid><addsrcrecordid>eNpFkFFLwzAQx4MoOOY-gPgS8LkzySXp4tuccw6qkznFt5C2iXbMZiad4Le3ZUOf7uD-vzvuh9A5JUNKibpaPT5Ph4wwNgQqgSo4Qj0GwBNg6u2461macKnSUzSIcU0IoWwkAaCHssyaUFf1O74x0Zb4wcRYfVt8axqDF85tvCm7aVXj5sPiuX-9xku_a_4JX-OnYJNlNhufoRNnNtEODrWPXu6mq8l9ki1m88k4SwrGoEmcNJYJwkoraWlyQ3NX5oLYnOR2xHlBQBJTOuaEVAVXIAthQBQiZTRPKTfQR5f7vdvgv3Y2Nnrtd6FuT2omR1QJ0T7cpug-VQQfY7BOb0P1acKPpkR33nTnTXfe9MFby1zsmcpa-5dXKedCSvgFnFRnNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681955327</pqid></control><display><type>article</type><title>Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Ming ; Li, Jiahua ; Tang, Fengxiao ; Asif, Sohaib ; Zhu, Yusen</creator><creatorcontrib>Zhao, Ming ; Li, Jiahua ; Tang, Fengxiao ; Asif, Sohaib ; Zhu, Yusen</creatorcontrib><description>With the increasing demand for bulk data transmission, offloading techniques to transmit data via mobile physical media is becoming common increasingly. The development of the Internet of Vehicles (IoV) provides new solutions for data offloading, as the IoV brings massive storage and transmission capabilities. However, the impact caused by the mobility of physical media brings a challenge to delay optimization and route selection of data offloading. In this paper, we consider a data transmission network architecture based on the Manhattan mobility model. The vehicle carries data on a fixed route in this scenario, enabling data transmission between geographically distant data centers. In order to reduce the total transmission time and reduce the impact of retransmission, we consider the temporal convolutional network (TCN) model to predict the allocation of the weight of delay. Next, we solve the optimal routing problem using a genetic algorithm based on a reinforcement learning mechanism (RLGA) to pre-allocate resources for offloading requests. The experimental results show that the proposed data offloading method can reduce the load on the cellular network and decrease the data transmission time, average transmission hops, and retransmission times compared with existing methods.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2022.3163193</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>bulk data transmission ; Cellular communication ; Computer architecture ; Data centers ; Data communication ; Data models ; Data offloading ; Data transmission ; Delays ; genetic algorithm (GA) ; Genetic algorithms ; Internet of Vehicles ; Machine learning ; manhattan mobility model ; Optimization ; Predictive models ; reinforcement learning (RL) ; Roads ; Route selection ; Routing ; temporal convolutional network (TCN)</subject><ispartof>IEEE transactions on network science and engineering, 2022-07, Vol.9 (4), p.2330-2340</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-f6ae2502de61daba1bfdb50eb0be844c0360adf2f569c4936c5a35c5721b714a3</citedby><cites>FETCH-LOGICAL-c223t-f6ae2502de61daba1bfdb50eb0be844c0360adf2f569c4936c5a35c5721b714a3</cites><orcidid>0000-0003-2414-4802 ; 0000-0002-8058-352X ; 0000-0003-2317-5359 ; 0000-0003-0707-470X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9744566$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9744566$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Li, Jiahua</creatorcontrib><creatorcontrib>Tang, Fengxiao</creatorcontrib><creatorcontrib>Asif, Sohaib</creatorcontrib><creatorcontrib>Zhu, Yusen</creatorcontrib><title>Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>With the increasing demand for bulk data transmission, offloading techniques to transmit data via mobile physical media is becoming common increasingly. The development of the Internet of Vehicles (IoV) provides new solutions for data offloading, as the IoV brings massive storage and transmission capabilities. However, the impact caused by the mobility of physical media brings a challenge to delay optimization and route selection of data offloading. In this paper, we consider a data transmission network architecture based on the Manhattan mobility model. The vehicle carries data on a fixed route in this scenario, enabling data transmission between geographically distant data centers. In order to reduce the total transmission time and reduce the impact of retransmission, we consider the temporal convolutional network (TCN) model to predict the allocation of the weight of delay. Next, we solve the optimal routing problem using a genetic algorithm based on a reinforcement learning mechanism (RLGA) to pre-allocate resources for offloading requests. The experimental results show that the proposed data offloading method can reduce the load on the cellular network and decrease the data transmission time, average transmission hops, and retransmission times compared with existing methods.</description><subject>bulk data transmission</subject><subject>Cellular communication</subject><subject>Computer architecture</subject><subject>Data centers</subject><subject>Data communication</subject><subject>Data models</subject><subject>Data offloading</subject><subject>Data transmission</subject><subject>Delays</subject><subject>genetic algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Internet of Vehicles</subject><subject>Machine learning</subject><subject>manhattan mobility model</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>reinforcement learning (RL)</subject><subject>Roads</subject><subject>Route selection</subject><subject>Routing</subject><subject>temporal convolutional network (TCN)</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkFFLwzAQx4MoOOY-gPgS8LkzySXp4tuccw6qkznFt5C2iXbMZiad4Le3ZUOf7uD-vzvuh9A5JUNKibpaPT5Ph4wwNgQqgSo4Qj0GwBNg6u2461macKnSUzSIcU0IoWwkAaCHssyaUFf1O74x0Zb4wcRYfVt8axqDF85tvCm7aVXj5sPiuX-9xku_a_4JX-OnYJNlNhufoRNnNtEODrWPXu6mq8l9ki1m88k4SwrGoEmcNJYJwkoraWlyQ3NX5oLYnOR2xHlBQBJTOuaEVAVXIAthQBQiZTRPKTfQR5f7vdvgv3Y2Nnrtd6FuT2omR1QJ0T7cpug-VQQfY7BOb0P1acKPpkR33nTnTXfe9MFby1zsmcpa-5dXKedCSvgFnFRnNQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zhao, Ming</creator><creator>Li, Jiahua</creator><creator>Tang, Fengxiao</creator><creator>Asif, Sohaib</creator><creator>Zhu, Yusen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2414-4802</orcidid><orcidid>https://orcid.org/0000-0002-8058-352X</orcidid><orcidid>https://orcid.org/0000-0003-2317-5359</orcidid><orcidid>https://orcid.org/0000-0003-0707-470X</orcidid></search><sort><creationdate>20220701</creationdate><title>Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA</title><author>Zhao, Ming ; Li, Jiahua ; Tang, Fengxiao ; Asif, Sohaib ; Zhu, Yusen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-f6ae2502de61daba1bfdb50eb0be844c0360adf2f569c4936c5a35c5721b714a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bulk data transmission</topic><topic>Cellular communication</topic><topic>Computer architecture</topic><topic>Data centers</topic><topic>Data communication</topic><topic>Data models</topic><topic>Data offloading</topic><topic>Data transmission</topic><topic>Delays</topic><topic>genetic algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Internet of Vehicles</topic><topic>Machine learning</topic><topic>manhattan mobility model</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>reinforcement learning (RL)</topic><topic>Roads</topic><topic>Route selection</topic><topic>Routing</topic><topic>temporal convolutional network (TCN)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Li, Jiahua</creatorcontrib><creatorcontrib>Tang, Fengxiao</creatorcontrib><creatorcontrib>Asif, Sohaib</creatorcontrib><creatorcontrib>Zhu, Yusen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Ming</au><au>Li, Jiahua</au><au>Tang, Fengxiao</au><au>Asif, Sohaib</au><au>Zhu, Yusen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>9</volume><issue>4</issue><spage>2330</spage><epage>2340</epage><pages>2330-2340</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>With the increasing demand for bulk data transmission, offloading techniques to transmit data via mobile physical media is becoming common increasingly. The development of the Internet of Vehicles (IoV) provides new solutions for data offloading, as the IoV brings massive storage and transmission capabilities. However, the impact caused by the mobility of physical media brings a challenge to delay optimization and route selection of data offloading. In this paper, we consider a data transmission network architecture based on the Manhattan mobility model. The vehicle carries data on a fixed route in this scenario, enabling data transmission between geographically distant data centers. In order to reduce the total transmission time and reduce the impact of retransmission, we consider the temporal convolutional network (TCN) model to predict the allocation of the weight of delay. Next, we solve the optimal routing problem using a genetic algorithm based on a reinforcement learning mechanism (RLGA) to pre-allocate resources for offloading requests. The experimental results show that the proposed data offloading method can reduce the load on the cellular network and decrease the data transmission time, average transmission hops, and retransmission times compared with existing methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2022.3163193</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2414-4802</orcidid><orcidid>https://orcid.org/0000-0002-8058-352X</orcidid><orcidid>https://orcid.org/0000-0003-2317-5359</orcidid><orcidid>https://orcid.org/0000-0003-0707-470X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4697
ispartof IEEE transactions on network science and engineering, 2022-07, Vol.9 (4), p.2330-2340
issn 2327-4697
2334-329X
language eng
recordid cdi_proquest_journals_2681955327
source IEEE Electronic Library (IEL)
subjects bulk data transmission
Cellular communication
Computer architecture
Data centers
Data communication
Data models
Data offloading
Data transmission
Delays
genetic algorithm (GA)
Genetic algorithms
Internet of Vehicles
Machine learning
manhattan mobility model
Optimization
Predictive models
reinforcement learning (RL)
Roads
Route selection
Routing
temporal convolutional network (TCN)
title Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Based%20Massive%20Data%20Offloading%20in%20the%20IoV:%20Routing%20Based%20on%20Pre-RLGA&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Zhao,%20Ming&rft.date=2022-07-01&rft.volume=9&rft.issue=4&rft.spage=2330&rft.epage=2340&rft.pages=2330-2340&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2022.3163193&rft_dat=%3Cproquest_RIE%3E2681955327%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681955327&rft_id=info:pmid/&rft_ieee_id=9744566&rfr_iscdi=true