Ice‐Marginal Proglacial Lakes Across Greenland: Present Status and a Possible Future

Ice‐marginal lakes can affect glacier dynamics but are ignored in studies of the evolution of the Greenland ice sheet (GrIS) and of peripheral mountain glaciers and ice caps (PGICs). Here we show that lakes occupy 10% of the GrIS ice margin and occur on 5% of PGICs. Ice velocity at the GrIS margin i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2022-06, Vol.49 (12), p.n/a
Hauptverfasser: Carrivick, Jonathan L., How, Penelope, Lea, James M., Sutherland, Jenna L., Grimes, Michael, Tweed, Fiona S., Cornford, Stephen, Quincey, Duncan J., Mallalieu, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Geophysical research letters
container_volume 49
creator Carrivick, Jonathan L.
How, Penelope
Lea, James M.
Sutherland, Jenna L.
Grimes, Michael
Tweed, Fiona S.
Cornford, Stephen
Quincey, Duncan J.
Mallalieu, Joseph
description Ice‐marginal lakes can affect glacier dynamics but are ignored in studies of the evolution of the Greenland ice sheet (GrIS) and of peripheral mountain glaciers and ice caps (PGICs). Here we show that lakes occupy 10% of the GrIS ice margin and occur on 5% of PGICs. Ice velocity at the GrIS margin is enhanced by ∼ 25% at lakes versus on land. Mean ice discharge into lakes is ∼4.9 Gt.yr, which is ∼1% of ice discharged through marine termini. We locate thousands of subglacial overdeepenings within which 7,404 km2 of future lakes could form, all of which will be ice‐marginal at some time. Future lakes in the west and east will be restricted to the margin of the GrIS and within alpine valleys, respectively. This status and possible future leads us to contend that lakes should be incorporated into projections of Greenland ice loss. Plain Language Summary Lakes forming on the edges of glaciers can affect ice dynamics but are not included within numerical models of the Greenland ice sheet (GrIS) or of peripheral mountain glaciers and ice caps (PGICs). We show that lakes presently occupy 10% of the GrIS ice margin and occur on 5% of PGICs. We determine that ice is typically moving 25% faster in the vicinity of lakes than at land margins. We estimate that ice discharge into lakes is ∼4.9 Gt.yr, which is 1% of that through marine glaciers. We identify thousands of depressions in the landscape that could hold future lakes as glaciers retreat from them. Overall, understanding of lake evolution should be incorporated into projections of Greenland ice loss and runoff. Key Points Lakes occupy 10% of the ice margin and vary between 2% and 26% by region Ice velocity is ∼25% greater into lakes compared to onto land and total ice discharge into lakes is ∼4.9 Gt.yr−1 Thousands of overdeepenings have potential to host more and larger lakes in the future but not all will be ice‐marginal simultaneously
doi_str_mv 10.1029/2022GL099276
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2681791556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681791556</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3670-daeb08b3439d24bb2fd96860ffbf7aa1e70860236621ec390b6cbb026ca1dc1d3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4wEscSWwtlMn5lYhGioFUfF3jWxnU6WEpNiJUG88As_Ik2AoB06cdnb0aaQZQo4ZnDHg6pwD51kOSvFE7pARU3EcpQDJLhkBqKCDv08OvF8BgADBRuRpbvHz_eNGu2Xd6oYuXLdstK2DzPUzejq1rvOeZg6xbXRbXgQEPbY9ve91P3gaPKrpIkC1aZDOhn5weEj2Kt14PPq9Y_I4u3q4vI7y22x-Oc0jLWQCUanRQGpELFTJY2N4VSqZSqgqUyVaM0wgfFxIyRlaocBIawxwaTUrLSvFmJxsc9euex3Q98WqG1wo4gsuU5YoNpnIQJ1uqZ8uDqti7eoX7TYFg-J7ueLvcgHnW_ytbnDzL1tkd7mMRQziC56vb4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681791556</pqid></control><display><type>article</type><title>Ice‐Marginal Proglacial Lakes Across Greenland: Present Status and a Possible Future</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Carrivick, Jonathan L. ; How, Penelope ; Lea, James M. ; Sutherland, Jenna L. ; Grimes, Michael ; Tweed, Fiona S. ; Cornford, Stephen ; Quincey, Duncan J. ; Mallalieu, Joseph</creator><creatorcontrib>Carrivick, Jonathan L. ; How, Penelope ; Lea, James M. ; Sutherland, Jenna L. ; Grimes, Michael ; Tweed, Fiona S. ; Cornford, Stephen ; Quincey, Duncan J. ; Mallalieu, Joseph</creatorcontrib><description>Ice‐marginal lakes can affect glacier dynamics but are ignored in studies of the evolution of the Greenland ice sheet (GrIS) and of peripheral mountain glaciers and ice caps (PGICs). Here we show that lakes occupy 10% of the GrIS ice margin and occur on 5% of PGICs. Ice velocity at the GrIS margin is enhanced by ∼ 25% at lakes versus on land. Mean ice discharge into lakes is ∼4.9 Gt.yr, which is ∼1% of ice discharged through marine termini. We locate thousands of subglacial overdeepenings within which 7,404 km2 of future lakes could form, all of which will be ice‐marginal at some time. Future lakes in the west and east will be restricted to the margin of the GrIS and within alpine valleys, respectively. This status and possible future leads us to contend that lakes should be incorporated into projections of Greenland ice loss. Plain Language Summary Lakes forming on the edges of glaciers can affect ice dynamics but are not included within numerical models of the Greenland ice sheet (GrIS) or of peripheral mountain glaciers and ice caps (PGICs). We show that lakes presently occupy 10% of the GrIS ice margin and occur on 5% of PGICs. We determine that ice is typically moving 25% faster in the vicinity of lakes than at land margins. We estimate that ice discharge into lakes is ∼4.9 Gt.yr, which is 1% of that through marine glaciers. We identify thousands of depressions in the landscape that could hold future lakes as glaciers retreat from them. Overall, understanding of lake evolution should be incorporated into projections of Greenland ice loss and runoff. Key Points Lakes occupy 10% of the ice margin and vary between 2% and 26% by region Ice velocity is ∼25% greater into lakes compared to onto land and total ice discharge into lakes is ∼4.9 Gt.yr−1 Thousands of overdeepenings have potential to host more and larger lakes in the future but not all will be ice‐marginal simultaneously</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2022GL099276</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Ablation ; Discharge ; Dynamics ; Evolution ; Glacial dynamics ; Glacial lakes ; Glaciation ; glacier ; Glacier retreat ; Glaciers ; Glaciohydrology ; Greenland ; Greenland ice sheet ; Ice ; Ice caps ; ice sheet ; Ice sheets ; lake ; Lakes ; Mathematical models ; meltwater ; Mountain glaciers ; Mountains ; Numerical models ; proglacial ; Runoff ; Valleys</subject><ispartof>Geophysical research letters, 2022-06, Vol.49 (12), p.n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3670-daeb08b3439d24bb2fd96860ffbf7aa1e70860236621ec390b6cbb026ca1dc1d3</citedby><cites>FETCH-LOGICAL-a3670-daeb08b3439d24bb2fd96860ffbf7aa1e70860236621ec390b6cbb026ca1dc1d3</cites><orcidid>0000-0002-7602-7926 ; 0000-0002-1988-8594 ; 0000-0002-9286-5348 ; 0000-0003-4253-920X ; 0000-0003-0957-1523 ; 0000-0002-8088-8497 ; 0000-0002-4299-6788 ; 0000-0003-1844-274X ; 0000-0003-1885-0858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022GL099276$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022GL099276$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Carrivick, Jonathan L.</creatorcontrib><creatorcontrib>How, Penelope</creatorcontrib><creatorcontrib>Lea, James M.</creatorcontrib><creatorcontrib>Sutherland, Jenna L.</creatorcontrib><creatorcontrib>Grimes, Michael</creatorcontrib><creatorcontrib>Tweed, Fiona S.</creatorcontrib><creatorcontrib>Cornford, Stephen</creatorcontrib><creatorcontrib>Quincey, Duncan J.</creatorcontrib><creatorcontrib>Mallalieu, Joseph</creatorcontrib><title>Ice‐Marginal Proglacial Lakes Across Greenland: Present Status and a Possible Future</title><title>Geophysical research letters</title><description>Ice‐marginal lakes can affect glacier dynamics but are ignored in studies of the evolution of the Greenland ice sheet (GrIS) and of peripheral mountain glaciers and ice caps (PGICs). Here we show that lakes occupy 10% of the GrIS ice margin and occur on 5% of PGICs. Ice velocity at the GrIS margin is enhanced by ∼ 25% at lakes versus on land. Mean ice discharge into lakes is ∼4.9 Gt.yr, which is ∼1% of ice discharged through marine termini. We locate thousands of subglacial overdeepenings within which 7,404 km2 of future lakes could form, all of which will be ice‐marginal at some time. Future lakes in the west and east will be restricted to the margin of the GrIS and within alpine valleys, respectively. This status and possible future leads us to contend that lakes should be incorporated into projections of Greenland ice loss. Plain Language Summary Lakes forming on the edges of glaciers can affect ice dynamics but are not included within numerical models of the Greenland ice sheet (GrIS) or of peripheral mountain glaciers and ice caps (PGICs). We show that lakes presently occupy 10% of the GrIS ice margin and occur on 5% of PGICs. We determine that ice is typically moving 25% faster in the vicinity of lakes than at land margins. We estimate that ice discharge into lakes is ∼4.9 Gt.yr, which is 1% of that through marine glaciers. We identify thousands of depressions in the landscape that could hold future lakes as glaciers retreat from them. Overall, understanding of lake evolution should be incorporated into projections of Greenland ice loss and runoff. Key Points Lakes occupy 10% of the ice margin and vary between 2% and 26% by region Ice velocity is ∼25% greater into lakes compared to onto land and total ice discharge into lakes is ∼4.9 Gt.yr−1 Thousands of overdeepenings have potential to host more and larger lakes in the future but not all will be ice‐marginal simultaneously</description><subject>Ablation</subject><subject>Discharge</subject><subject>Dynamics</subject><subject>Evolution</subject><subject>Glacial dynamics</subject><subject>Glacial lakes</subject><subject>Glaciation</subject><subject>glacier</subject><subject>Glacier retreat</subject><subject>Glaciers</subject><subject>Glaciohydrology</subject><subject>Greenland</subject><subject>Greenland ice sheet</subject><subject>Ice</subject><subject>Ice caps</subject><subject>ice sheet</subject><subject>Ice sheets</subject><subject>lake</subject><subject>Lakes</subject><subject>Mathematical models</subject><subject>meltwater</subject><subject>Mountain glaciers</subject><subject>Mountains</subject><subject>Numerical models</subject><subject>proglacial</subject><subject>Runoff</subject><subject>Valleys</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM1OwzAQhC0EEqVw4wEscSWwtlMn5lYhGioFUfF3jWxnU6WEpNiJUG88As_Ik2AoB06cdnb0aaQZQo4ZnDHg6pwD51kOSvFE7pARU3EcpQDJLhkBqKCDv08OvF8BgADBRuRpbvHz_eNGu2Xd6oYuXLdstK2DzPUzejq1rvOeZg6xbXRbXgQEPbY9ve91P3gaPKrpIkC1aZDOhn5weEj2Kt14PPq9Y_I4u3q4vI7y22x-Oc0jLWQCUanRQGpELFTJY2N4VSqZSqgqUyVaM0wgfFxIyRlaocBIawxwaTUrLSvFmJxsc9euex3Q98WqG1wo4gsuU5YoNpnIQJ1uqZ8uDqti7eoX7TYFg-J7ueLvcgHnW_ytbnDzL1tkd7mMRQziC56vb4Q</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>Carrivick, Jonathan L.</creator><creator>How, Penelope</creator><creator>Lea, James M.</creator><creator>Sutherland, Jenna L.</creator><creator>Grimes, Michael</creator><creator>Tweed, Fiona S.</creator><creator>Cornford, Stephen</creator><creator>Quincey, Duncan J.</creator><creator>Mallalieu, Joseph</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7602-7926</orcidid><orcidid>https://orcid.org/0000-0002-1988-8594</orcidid><orcidid>https://orcid.org/0000-0002-9286-5348</orcidid><orcidid>https://orcid.org/0000-0003-4253-920X</orcidid><orcidid>https://orcid.org/0000-0003-0957-1523</orcidid><orcidid>https://orcid.org/0000-0002-8088-8497</orcidid><orcidid>https://orcid.org/0000-0002-4299-6788</orcidid><orcidid>https://orcid.org/0000-0003-1844-274X</orcidid><orcidid>https://orcid.org/0000-0003-1885-0858</orcidid></search><sort><creationdate>20220628</creationdate><title>Ice‐Marginal Proglacial Lakes Across Greenland: Present Status and a Possible Future</title><author>Carrivick, Jonathan L. ; How, Penelope ; Lea, James M. ; Sutherland, Jenna L. ; Grimes, Michael ; Tweed, Fiona S. ; Cornford, Stephen ; Quincey, Duncan J. ; Mallalieu, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3670-daeb08b3439d24bb2fd96860ffbf7aa1e70860236621ec390b6cbb026ca1dc1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Discharge</topic><topic>Dynamics</topic><topic>Evolution</topic><topic>Glacial dynamics</topic><topic>Glacial lakes</topic><topic>Glaciation</topic><topic>glacier</topic><topic>Glacier retreat</topic><topic>Glaciers</topic><topic>Glaciohydrology</topic><topic>Greenland</topic><topic>Greenland ice sheet</topic><topic>Ice</topic><topic>Ice caps</topic><topic>ice sheet</topic><topic>Ice sheets</topic><topic>lake</topic><topic>Lakes</topic><topic>Mathematical models</topic><topic>meltwater</topic><topic>Mountain glaciers</topic><topic>Mountains</topic><topic>Numerical models</topic><topic>proglacial</topic><topic>Runoff</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrivick, Jonathan L.</creatorcontrib><creatorcontrib>How, Penelope</creatorcontrib><creatorcontrib>Lea, James M.</creatorcontrib><creatorcontrib>Sutherland, Jenna L.</creatorcontrib><creatorcontrib>Grimes, Michael</creatorcontrib><creatorcontrib>Tweed, Fiona S.</creatorcontrib><creatorcontrib>Cornford, Stephen</creatorcontrib><creatorcontrib>Quincey, Duncan J.</creatorcontrib><creatorcontrib>Mallalieu, Joseph</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrivick, Jonathan L.</au><au>How, Penelope</au><au>Lea, James M.</au><au>Sutherland, Jenna L.</au><au>Grimes, Michael</au><au>Tweed, Fiona S.</au><au>Cornford, Stephen</au><au>Quincey, Duncan J.</au><au>Mallalieu, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ice‐Marginal Proglacial Lakes Across Greenland: Present Status and a Possible Future</atitle><jtitle>Geophysical research letters</jtitle><date>2022-06-28</date><risdate>2022</risdate><volume>49</volume><issue>12</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Ice‐marginal lakes can affect glacier dynamics but are ignored in studies of the evolution of the Greenland ice sheet (GrIS) and of peripheral mountain glaciers and ice caps (PGICs). Here we show that lakes occupy 10% of the GrIS ice margin and occur on 5% of PGICs. Ice velocity at the GrIS margin is enhanced by ∼ 25% at lakes versus on land. Mean ice discharge into lakes is ∼4.9 Gt.yr, which is ∼1% of ice discharged through marine termini. We locate thousands of subglacial overdeepenings within which 7,404 km2 of future lakes could form, all of which will be ice‐marginal at some time. Future lakes in the west and east will be restricted to the margin of the GrIS and within alpine valleys, respectively. This status and possible future leads us to contend that lakes should be incorporated into projections of Greenland ice loss. Plain Language Summary Lakes forming on the edges of glaciers can affect ice dynamics but are not included within numerical models of the Greenland ice sheet (GrIS) or of peripheral mountain glaciers and ice caps (PGICs). We show that lakes presently occupy 10% of the GrIS ice margin and occur on 5% of PGICs. We determine that ice is typically moving 25% faster in the vicinity of lakes than at land margins. We estimate that ice discharge into lakes is ∼4.9 Gt.yr, which is 1% of that through marine glaciers. We identify thousands of depressions in the landscape that could hold future lakes as glaciers retreat from them. Overall, understanding of lake evolution should be incorporated into projections of Greenland ice loss and runoff. Key Points Lakes occupy 10% of the ice margin and vary between 2% and 26% by region Ice velocity is ∼25% greater into lakes compared to onto land and total ice discharge into lakes is ∼4.9 Gt.yr−1 Thousands of overdeepenings have potential to host more and larger lakes in the future but not all will be ice‐marginal simultaneously</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2022GL099276</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7602-7926</orcidid><orcidid>https://orcid.org/0000-0002-1988-8594</orcidid><orcidid>https://orcid.org/0000-0002-9286-5348</orcidid><orcidid>https://orcid.org/0000-0003-4253-920X</orcidid><orcidid>https://orcid.org/0000-0003-0957-1523</orcidid><orcidid>https://orcid.org/0000-0002-8088-8497</orcidid><orcidid>https://orcid.org/0000-0002-4299-6788</orcidid><orcidid>https://orcid.org/0000-0003-1844-274X</orcidid><orcidid>https://orcid.org/0000-0003-1885-0858</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2022-06, Vol.49 (12), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2681791556
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Ablation
Discharge
Dynamics
Evolution
Glacial dynamics
Glacial lakes
Glaciation
glacier
Glacier retreat
Glaciers
Glaciohydrology
Greenland
Greenland ice sheet
Ice
Ice caps
ice sheet
Ice sheets
lake
Lakes
Mathematical models
meltwater
Mountain glaciers
Mountains
Numerical models
proglacial
Runoff
Valleys
title Ice‐Marginal Proglacial Lakes Across Greenland: Present Status and a Possible Future
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ice%E2%80%90Marginal%20Proglacial%20Lakes%20Across%20Greenland:%20Present%20Status%20and%20a%20Possible%20Future&rft.jtitle=Geophysical%20research%20letters&rft.au=Carrivick,%20Jonathan%20L.&rft.date=2022-06-28&rft.volume=49&rft.issue=12&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2022GL099276&rft_dat=%3Cproquest_cross%3E2681791556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681791556&rft_id=info:pmid/&rfr_iscdi=true