Sparse precision matrix estimation in phenotypic trait evolution models

Phylogenetic trait evolution models allow for the estimation of evolutionary correlations between a set of traits observed in a sample of related organisms. By directly modeling the evolution of the traits along an estimable phylogenetic tree, the model's structure effectively controls for shar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-11
Hauptverfasser: Pinheiro, Felipe G, Prass, Taiane S, Hassler, Gabriel W, Suchard, Marc A, Cybis, Gabriela B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pinheiro, Felipe G
Prass, Taiane S
Hassler, Gabriel W
Suchard, Marc A
Cybis, Gabriela B
description Phylogenetic trait evolution models allow for the estimation of evolutionary correlations between a set of traits observed in a sample of related organisms. By directly modeling the evolution of the traits along an estimable phylogenetic tree, the model's structure effectively controls for shared evolutionary history. In these models, relevant correlations are usually assessed through the high posterior density interval of their marginal distributions. However, the selected correlations alone may not provide the full picture regarding trait relationships. Their association structure, expressed through a graph that encodes partial correlations, can in contrast highlight sparsity patterns featuring direct associations between traits. In order to develop a model-based method to identify this association structure we explore the use of Gaussian graphical models (GGM) for covariance selection. We model the precision matrix with a G-Wishart conjugate prior, which results in sparse precision estimates. Furthermore the model naturally allows for Bayes Factor tests of association between the traits, with no additional computation required. We evaluate our approach through Monte Carlo simulations and applications that examine the association structure and evolutionary correlations of phenotypic traits in Darwin's finches and genomic and phenotypic traits in prokaryotes. Our approach provides accurate graph estimates and lower errors for the precision and correlation parameter estimates, particularly for conditionally independent traits, which are the target for sparsity in GGMs.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2681640199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681640199</sourcerecordid><originalsourceid>FETCH-proquest_journals_26816401993</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_EHBdSJM2tmvxsdd9CfWKt7RJzE1F_94qfoCrOcwZZsYSqVSeVYWUC5YSdUIIqTeyLFXCDidvAgH3AVokdJYPJgZ8cqCIE34atNzfwLr48tjyGAxGDg_Xj187uAv0tGLzq-kJ0l8u2Xq_O2-PmQ_uPk5nTefGYCfVSF3luhB5Xav_Vm-UUzzb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681640199</pqid></control><display><type>article</type><title>Sparse precision matrix estimation in phenotypic trait evolution models</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Pinheiro, Felipe G ; Prass, Taiane S ; Hassler, Gabriel W ; Suchard, Marc A ; Cybis, Gabriela B</creator><creatorcontrib>Pinheiro, Felipe G ; Prass, Taiane S ; Hassler, Gabriel W ; Suchard, Marc A ; Cybis, Gabriela B</creatorcontrib><description>Phylogenetic trait evolution models allow for the estimation of evolutionary correlations between a set of traits observed in a sample of related organisms. By directly modeling the evolution of the traits along an estimable phylogenetic tree, the model's structure effectively controls for shared evolutionary history. In these models, relevant correlations are usually assessed through the high posterior density interval of their marginal distributions. However, the selected correlations alone may not provide the full picture regarding trait relationships. Their association structure, expressed through a graph that encodes partial correlations, can in contrast highlight sparsity patterns featuring direct associations between traits. In order to develop a model-based method to identify this association structure we explore the use of Gaussian graphical models (GGM) for covariance selection. We model the precision matrix with a G-Wishart conjugate prior, which results in sparse precision estimates. Furthermore the model naturally allows for Bayes Factor tests of association between the traits, with no additional computation required. We evaluate our approach through Monte Carlo simulations and applications that examine the association structure and evolutionary correlations of phenotypic traits in Darwin's finches and genomic and phenotypic traits in prokaryotes. Our approach provides accurate graph estimates and lower errors for the precision and correlation parameter estimates, particularly for conditionally independent traits, which are the target for sparsity in GGMs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Correlation ; Estimates ; Evolution ; Identification methods ; Parameter estimation ; Phylogenetics ; Prokaryotes ; Sparsity</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Pinheiro, Felipe G</creatorcontrib><creatorcontrib>Prass, Taiane S</creatorcontrib><creatorcontrib>Hassler, Gabriel W</creatorcontrib><creatorcontrib>Suchard, Marc A</creatorcontrib><creatorcontrib>Cybis, Gabriela B</creatorcontrib><title>Sparse precision matrix estimation in phenotypic trait evolution models</title><title>arXiv.org</title><description>Phylogenetic trait evolution models allow for the estimation of evolutionary correlations between a set of traits observed in a sample of related organisms. By directly modeling the evolution of the traits along an estimable phylogenetic tree, the model's structure effectively controls for shared evolutionary history. In these models, relevant correlations are usually assessed through the high posterior density interval of their marginal distributions. However, the selected correlations alone may not provide the full picture regarding trait relationships. Their association structure, expressed through a graph that encodes partial correlations, can in contrast highlight sparsity patterns featuring direct associations between traits. In order to develop a model-based method to identify this association structure we explore the use of Gaussian graphical models (GGM) for covariance selection. We model the precision matrix with a G-Wishart conjugate prior, which results in sparse precision estimates. Furthermore the model naturally allows for Bayes Factor tests of association between the traits, with no additional computation required. We evaluate our approach through Monte Carlo simulations and applications that examine the association structure and evolutionary correlations of phenotypic traits in Darwin's finches and genomic and phenotypic traits in prokaryotes. Our approach provides accurate graph estimates and lower errors for the precision and correlation parameter estimates, particularly for conditionally independent traits, which are the target for sparsity in GGMs.</description><subject>Correlation</subject><subject>Estimates</subject><subject>Evolution</subject><subject>Identification methods</subject><subject>Parameter estimation</subject><subject>Phylogenetics</subject><subject>Prokaryotes</subject><subject>Sparsity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjMsKwjAURIMgWLT_EHBdSJM2tmvxsdd9CfWKt7RJzE1F_94qfoCrOcwZZsYSqVSeVYWUC5YSdUIIqTeyLFXCDidvAgH3AVokdJYPJgZ8cqCIE34atNzfwLr48tjyGAxGDg_Xj187uAv0tGLzq-kJ0l8u2Xq_O2-PmQ_uPk5nTefGYCfVSF3luhB5Xav_Vm-UUzzb</recordid><startdate>20221122</startdate><enddate>20221122</enddate><creator>Pinheiro, Felipe G</creator><creator>Prass, Taiane S</creator><creator>Hassler, Gabriel W</creator><creator>Suchard, Marc A</creator><creator>Cybis, Gabriela B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221122</creationdate><title>Sparse precision matrix estimation in phenotypic trait evolution models</title><author>Pinheiro, Felipe G ; Prass, Taiane S ; Hassler, Gabriel W ; Suchard, Marc A ; Cybis, Gabriela B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26816401993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Correlation</topic><topic>Estimates</topic><topic>Evolution</topic><topic>Identification methods</topic><topic>Parameter estimation</topic><topic>Phylogenetics</topic><topic>Prokaryotes</topic><topic>Sparsity</topic><toplevel>online_resources</toplevel><creatorcontrib>Pinheiro, Felipe G</creatorcontrib><creatorcontrib>Prass, Taiane S</creatorcontrib><creatorcontrib>Hassler, Gabriel W</creatorcontrib><creatorcontrib>Suchard, Marc A</creatorcontrib><creatorcontrib>Cybis, Gabriela B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinheiro, Felipe G</au><au>Prass, Taiane S</au><au>Hassler, Gabriel W</au><au>Suchard, Marc A</au><au>Cybis, Gabriela B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sparse precision matrix estimation in phenotypic trait evolution models</atitle><jtitle>arXiv.org</jtitle><date>2022-11-22</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Phylogenetic trait evolution models allow for the estimation of evolutionary correlations between a set of traits observed in a sample of related organisms. By directly modeling the evolution of the traits along an estimable phylogenetic tree, the model's structure effectively controls for shared evolutionary history. In these models, relevant correlations are usually assessed through the high posterior density interval of their marginal distributions. However, the selected correlations alone may not provide the full picture regarding trait relationships. Their association structure, expressed through a graph that encodes partial correlations, can in contrast highlight sparsity patterns featuring direct associations between traits. In order to develop a model-based method to identify this association structure we explore the use of Gaussian graphical models (GGM) for covariance selection. We model the precision matrix with a G-Wishart conjugate prior, which results in sparse precision estimates. Furthermore the model naturally allows for Bayes Factor tests of association between the traits, with no additional computation required. We evaluate our approach through Monte Carlo simulations and applications that examine the association structure and evolutionary correlations of phenotypic traits in Darwin's finches and genomic and phenotypic traits in prokaryotes. Our approach provides accurate graph estimates and lower errors for the precision and correlation parameter estimates, particularly for conditionally independent traits, which are the target for sparsity in GGMs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2681640199
source Open Access: Freely Accessible Journals by multiple vendors
subjects Correlation
Estimates
Evolution
Identification methods
Parameter estimation
Phylogenetics
Prokaryotes
Sparsity
title Sparse precision matrix estimation in phenotypic trait evolution models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sparse%20precision%20matrix%20estimation%20in%20phenotypic%20trait%20evolution%20models&rft.jtitle=arXiv.org&rft.au=Pinheiro,%20Felipe%20G&rft.date=2022-11-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2681640199%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681640199&rft_id=info:pmid/&rfr_iscdi=true