Recovery elemental sulfur from calcium sulfide prepared by red gypsum in sulfuric acid wastewater treatment

Red gypsum comes from TiO 2 production industry by sulfate method, which comes from the low acidic liquid stream treatment using lime or limestone. At present, RG main is treated by outdoor stacking, which induces additional costs and raises environmental concerns. It will be of interest to see the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of material cycles and waste management 2022-07, Vol.24 (4), p.1542-1550
Hauptverfasser: Ma, Xiaoling, Tan, Hongbin, Su, Xuemei, Hou, Xiong, Dong, Faqin, Yang, Feihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1550
container_issue 4
container_start_page 1542
container_title Journal of material cycles and waste management
container_volume 24
creator Ma, Xiaoling
Tan, Hongbin
Su, Xuemei
Hou, Xiong
Dong, Faqin
Yang, Feihua
description Red gypsum comes from TiO 2 production industry by sulfate method, which comes from the low acidic liquid stream treatment using lime or limestone. At present, RG main is treated by outdoor stacking, which induces additional costs and raises environmental concerns. It will be of interest to see the transformations of RG to obtain elemental sulfur and calcium cyclic utilization in the acidic liquid stream treatment. Calcium sulfide was prepared by calcining RG at 900 °C for 10 min and pure gypsum at 900 °C for 20 min, respectively. The decomposition of RG was easy than pure gypsum because of Fe 2 O 3 catalysis. And srebrodolskite was observed in the samples from RG calcined at 800 to 1100 °C, respectively. Hydrogen sulfide was produced when CaS reacted with sulphuric acid wastewater and rod-like gypsum crystals were observed. And then, pellets of elemental sulfur, with 1.5–5 μm in diameter, were obtained by the H 2 S oxidation in Fe(III) chelate solution, which achieved elemental sulfur recovery and calcium cyclic utilization.
doi_str_mv 10.1007/s10163-022-01419-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2681637866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681637866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-73230524df570e2b4ef09b5d66a6e81d4beb569ec0c0a69773b0f7ef6ed514123</originalsourceid><addsrcrecordid>eNp9kFtLxDAQhYMouK7-AZ8CPkdza9I-yuINBEH0OaTpZOnam0nrsv_e7HbBN59mmDnnDPMhdM3oLaNU30VGmRKEck4ok6wg8gQtmGKM5Jzr09RLkRNZZPocXcS4oZQXVOgF-noH1_9A2GFooIVutA2OU-OngH3oW-xs4-qpPczqCvAQYLABKlzu8L6sd0NM67o7umqHrasrvLVxhK0dIeAxgB330ZfozNsmwtWxLtHn48PH6pm8vj29rO5fiROsGIkWXNCMy8pnmgIvJXhalFmllFWQs0qWUGaqAEcdtarQWpTUa_AKqiz9zsUS3cy5Q-i_J4ij2fRT6NJJw1WeOOlcqaTis8qFPsYA3gyhbm3YGUbNHqqZoZoE1RygGplMYjbFJO7WEP6i_3H9Aufqe94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681637866</pqid></control><display><type>article</type><title>Recovery elemental sulfur from calcium sulfide prepared by red gypsum in sulfuric acid wastewater treatment</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ma, Xiaoling ; Tan, Hongbin ; Su, Xuemei ; Hou, Xiong ; Dong, Faqin ; Yang, Feihua</creator><creatorcontrib>Ma, Xiaoling ; Tan, Hongbin ; Su, Xuemei ; Hou, Xiong ; Dong, Faqin ; Yang, Feihua</creatorcontrib><description>Red gypsum comes from TiO 2 production industry by sulfate method, which comes from the low acidic liquid stream treatment using lime or limestone. At present, RG main is treated by outdoor stacking, which induces additional costs and raises environmental concerns. It will be of interest to see the transformations of RG to obtain elemental sulfur and calcium cyclic utilization in the acidic liquid stream treatment. Calcium sulfide was prepared by calcining RG at 900 °C for 10 min and pure gypsum at 900 °C for 20 min, respectively. The decomposition of RG was easy than pure gypsum because of Fe 2 O 3 catalysis. And srebrodolskite was observed in the samples from RG calcined at 800 to 1100 °C, respectively. Hydrogen sulfide was produced when CaS reacted with sulphuric acid wastewater and rod-like gypsum crystals were observed. And then, pellets of elemental sulfur, with 1.5–5 μm in diameter, were obtained by the H 2 S oxidation in Fe(III) chelate solution, which achieved elemental sulfur recovery and calcium cyclic utilization.</description><identifier>ISSN: 1438-4957</identifier><identifier>EISSN: 1611-8227</identifier><identifier>DOI: 10.1007/s10163-022-01419-4</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Calcium ; Calcium sulfides ; Catalysis ; Civil Engineering ; Crystals ; Engineering ; Environmental Management ; Ferric oxide ; Gypsum ; Hydrogen sulfide ; Iron ; Limestone ; Original Article ; Oxidation ; Recovery ; Roasting ; Sulfur ; Sulfuric acid ; Titanium dioxide ; Waste Management/Waste Technology ; Wastewater treatment</subject><ispartof>Journal of material cycles and waste management, 2022-07, Vol.24 (4), p.1542-1550</ispartof><rights>Springer Japan KK, part of Springer Nature 2022</rights><rights>Springer Japan KK, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-73230524df570e2b4ef09b5d66a6e81d4beb569ec0c0a69773b0f7ef6ed514123</citedby><cites>FETCH-LOGICAL-c319t-73230524df570e2b4ef09b5d66a6e81d4beb569ec0c0a69773b0f7ef6ed514123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10163-022-01419-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10163-022-01419-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Ma, Xiaoling</creatorcontrib><creatorcontrib>Tan, Hongbin</creatorcontrib><creatorcontrib>Su, Xuemei</creatorcontrib><creatorcontrib>Hou, Xiong</creatorcontrib><creatorcontrib>Dong, Faqin</creatorcontrib><creatorcontrib>Yang, Feihua</creatorcontrib><title>Recovery elemental sulfur from calcium sulfide prepared by red gypsum in sulfuric acid wastewater treatment</title><title>Journal of material cycles and waste management</title><addtitle>J Mater Cycles Waste Manag</addtitle><description>Red gypsum comes from TiO 2 production industry by sulfate method, which comes from the low acidic liquid stream treatment using lime or limestone. At present, RG main is treated by outdoor stacking, which induces additional costs and raises environmental concerns. It will be of interest to see the transformations of RG to obtain elemental sulfur and calcium cyclic utilization in the acidic liquid stream treatment. Calcium sulfide was prepared by calcining RG at 900 °C for 10 min and pure gypsum at 900 °C for 20 min, respectively. The decomposition of RG was easy than pure gypsum because of Fe 2 O 3 catalysis. And srebrodolskite was observed in the samples from RG calcined at 800 to 1100 °C, respectively. Hydrogen sulfide was produced when CaS reacted with sulphuric acid wastewater and rod-like gypsum crystals were observed. And then, pellets of elemental sulfur, with 1.5–5 μm in diameter, were obtained by the H 2 S oxidation in Fe(III) chelate solution, which achieved elemental sulfur recovery and calcium cyclic utilization.</description><subject>Calcium</subject><subject>Calcium sulfides</subject><subject>Catalysis</subject><subject>Civil Engineering</subject><subject>Crystals</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Ferric oxide</subject><subject>Gypsum</subject><subject>Hydrogen sulfide</subject><subject>Iron</subject><subject>Limestone</subject><subject>Original Article</subject><subject>Oxidation</subject><subject>Recovery</subject><subject>Roasting</subject><subject>Sulfur</subject><subject>Sulfuric acid</subject><subject>Titanium dioxide</subject><subject>Waste Management/Waste Technology</subject><subject>Wastewater treatment</subject><issn>1438-4957</issn><issn>1611-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kFtLxDAQhYMouK7-AZ8CPkdza9I-yuINBEH0OaTpZOnam0nrsv_e7HbBN59mmDnnDPMhdM3oLaNU30VGmRKEck4ok6wg8gQtmGKM5Jzr09RLkRNZZPocXcS4oZQXVOgF-noH1_9A2GFooIVutA2OU-OngH3oW-xs4-qpPczqCvAQYLABKlzu8L6sd0NM67o7umqHrasrvLVxhK0dIeAxgB330ZfozNsmwtWxLtHn48PH6pm8vj29rO5fiROsGIkWXNCMy8pnmgIvJXhalFmllFWQs0qWUGaqAEcdtarQWpTUa_AKqiz9zsUS3cy5Q-i_J4ij2fRT6NJJw1WeOOlcqaTis8qFPsYA3gyhbm3YGUbNHqqZoZoE1RygGplMYjbFJO7WEP6i_3H9Aufqe94</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ma, Xiaoling</creator><creator>Tan, Hongbin</creator><creator>Su, Xuemei</creator><creator>Hou, Xiong</creator><creator>Dong, Faqin</creator><creator>Yang, Feihua</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>M0C</scope><scope>M2P</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20220701</creationdate><title>Recovery elemental sulfur from calcium sulfide prepared by red gypsum in sulfuric acid wastewater treatment</title><author>Ma, Xiaoling ; Tan, Hongbin ; Su, Xuemei ; Hou, Xiong ; Dong, Faqin ; Yang, Feihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-73230524df570e2b4ef09b5d66a6e81d4beb569ec0c0a69773b0f7ef6ed514123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calcium</topic><topic>Calcium sulfides</topic><topic>Catalysis</topic><topic>Civil Engineering</topic><topic>Crystals</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Ferric oxide</topic><topic>Gypsum</topic><topic>Hydrogen sulfide</topic><topic>Iron</topic><topic>Limestone</topic><topic>Original Article</topic><topic>Oxidation</topic><topic>Recovery</topic><topic>Roasting</topic><topic>Sulfur</topic><topic>Sulfuric acid</topic><topic>Titanium dioxide</topic><topic>Waste Management/Waste Technology</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xiaoling</creatorcontrib><creatorcontrib>Tan, Hongbin</creatorcontrib><creatorcontrib>Su, Xuemei</creatorcontrib><creatorcontrib>Hou, Xiong</creatorcontrib><creatorcontrib>Dong, Faqin</creatorcontrib><creatorcontrib>Yang, Feihua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of material cycles and waste management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xiaoling</au><au>Tan, Hongbin</au><au>Su, Xuemei</au><au>Hou, Xiong</au><au>Dong, Faqin</au><au>Yang, Feihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery elemental sulfur from calcium sulfide prepared by red gypsum in sulfuric acid wastewater treatment</atitle><jtitle>Journal of material cycles and waste management</jtitle><stitle>J Mater Cycles Waste Manag</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>24</volume><issue>4</issue><spage>1542</spage><epage>1550</epage><pages>1542-1550</pages><issn>1438-4957</issn><eissn>1611-8227</eissn><abstract>Red gypsum comes from TiO 2 production industry by sulfate method, which comes from the low acidic liquid stream treatment using lime or limestone. At present, RG main is treated by outdoor stacking, which induces additional costs and raises environmental concerns. It will be of interest to see the transformations of RG to obtain elemental sulfur and calcium cyclic utilization in the acidic liquid stream treatment. Calcium sulfide was prepared by calcining RG at 900 °C for 10 min and pure gypsum at 900 °C for 20 min, respectively. The decomposition of RG was easy than pure gypsum because of Fe 2 O 3 catalysis. And srebrodolskite was observed in the samples from RG calcined at 800 to 1100 °C, respectively. Hydrogen sulfide was produced when CaS reacted with sulphuric acid wastewater and rod-like gypsum crystals were observed. And then, pellets of elemental sulfur, with 1.5–5 μm in diameter, were obtained by the H 2 S oxidation in Fe(III) chelate solution, which achieved elemental sulfur recovery and calcium cyclic utilization.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10163-022-01419-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1438-4957
ispartof Journal of material cycles and waste management, 2022-07, Vol.24 (4), p.1542-1550
issn 1438-4957
1611-8227
language eng
recordid cdi_proquest_journals_2681637866
source SpringerLink Journals - AutoHoldings
subjects Calcium
Calcium sulfides
Catalysis
Civil Engineering
Crystals
Engineering
Environmental Management
Ferric oxide
Gypsum
Hydrogen sulfide
Iron
Limestone
Original Article
Oxidation
Recovery
Roasting
Sulfur
Sulfuric acid
Titanium dioxide
Waste Management/Waste Technology
Wastewater treatment
title Recovery elemental sulfur from calcium sulfide prepared by red gypsum in sulfuric acid wastewater treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20elemental%20sulfur%20from%20calcium%20sulfide%20prepared%20by%20red%20gypsum%20in%20sulfuric%20acid%20wastewater%20treatment&rft.jtitle=Journal%20of%20material%20cycles%20and%20waste%20management&rft.au=Ma,%20Xiaoling&rft.date=2022-07-01&rft.volume=24&rft.issue=4&rft.spage=1542&rft.epage=1550&rft.pages=1542-1550&rft.issn=1438-4957&rft.eissn=1611-8227&rft_id=info:doi/10.1007/s10163-022-01419-4&rft_dat=%3Cproquest_cross%3E2681637866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681637866&rft_id=info:pmid/&rfr_iscdi=true