On the mechanism for the highly sensitive response of cellulose nanofiber hydrogels to the presence of ionic solutes
Hydrogels formed by cellulose nanofibers (CNFs) find use in a variety of applications. CNF hydrogels generally stiffen and ultimately flocculate with increasing salt concentrations. While charge repulsion explains the behavior of nanocellulose variants that have been stabilized by charged groups, it...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2022-07, Vol.29 (11), p.6109-6121 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6121 |
---|---|
container_issue | 11 |
container_start_page | 6109 |
container_title | Cellulose (London) |
container_volume | 29 |
creator | Arola, Suvi Kou, Zhennan Rooijakkers, Bart J. M. Velagapudi, Rama Sammalkorpi, Maria Linder, Markus B. |
description | Hydrogels formed by cellulose nanofibers (CNFs) find use in a variety of applications. CNF hydrogels generally stiffen and ultimately flocculate with increasing salt concentrations. While charge repulsion explains the behavior of nanocellulose variants that have been stabilized by charged groups, it has been a puzzle why ions have such a pronounced effect also on CNFs with unmodified surfaces. We studied the effect of ionic solutes on native CNF hydrogels, and found that already at very low concentrations of around 1 mM, ions cause crowding of the hydrogels. The ionic solutes used were NaCl, Na
2
SO
4
, NaI, NaSCN, and sodium acetate. For the hydrogels, we used low densities of CNFs which lead to relatively weak gels that were highly sensitive to salts. Screening of the electrical double layer could not explain the results at such low ion concentrations. To understand cellulose-ion interactions, we used computational molecular dynamics simulations. The results provide an explanation by the effect of ions on the structure of the hydration layers of the cellulose. Understanding how and why ions affect the properties of native CNF hydrogels can help in for example manufacture of CNFs and when using CNFs as material components, substrates for enzymes, or as rheology modifiers. Ion-effects on the hydration layer of cellulose may also be important for more fundamental understanding of interfacial interactions of cellulose with water under different conditions.
Graphical abstract |
doi_str_mv | 10.1007/s10570-022-04664-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2681635606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681635606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b5177a6340184505c5211cf14e80a7a176d999e6e9da96201b2a0f67bf51f7f03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9VJ2ibNURa_QNiLgreQdifbLt2kJq3L_ntrK3jzNGTyPu_AQ8g1g1sGIO8ig1xCApwnkAmRJYcTsmC55ElR8I9TsgAl1PidqnNyEeMOAJTkbEH6taN9jXSPVW1cE_fU-jBt6mZbt0ca0cWmb76QBoyddxGpt7TCth1aPz6ccd42JQZaHzfBb7GNtPdTQzcS6KoJaLxrKhp9O_QYL8mZNW3Eq9-5JO-PD2-r5-R1_fSyun9NqlSkfVLmTEoj0gxYkeWQVzlnrLIswwKMNEyKjVIKBaqNUYIDK7kBK2Rpc2alhXRJbubeLvjPAWOvd34IbjypuSiYSHMBYkzxOVUFH2NAq7vQ7E04agb6x66e7erRrp7s6sMIpTMUx7DbYvir_of6BqRyfvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681635606</pqid></control><display><type>article</type><title>On the mechanism for the highly sensitive response of cellulose nanofiber hydrogels to the presence of ionic solutes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Arola, Suvi ; Kou, Zhennan ; Rooijakkers, Bart J. M. ; Velagapudi, Rama ; Sammalkorpi, Maria ; Linder, Markus B.</creator><creatorcontrib>Arola, Suvi ; Kou, Zhennan ; Rooijakkers, Bart J. M. ; Velagapudi, Rama ; Sammalkorpi, Maria ; Linder, Markus B.</creatorcontrib><description>Hydrogels formed by cellulose nanofibers (CNFs) find use in a variety of applications. CNF hydrogels generally stiffen and ultimately flocculate with increasing salt concentrations. While charge repulsion explains the behavior of nanocellulose variants that have been stabilized by charged groups, it has been a puzzle why ions have such a pronounced effect also on CNFs with unmodified surfaces. We studied the effect of ionic solutes on native CNF hydrogels, and found that already at very low concentrations of around 1 mM, ions cause crowding of the hydrogels. The ionic solutes used were NaCl, Na
2
SO
4
, NaI, NaSCN, and sodium acetate. For the hydrogels, we used low densities of CNFs which lead to relatively weak gels that were highly sensitive to salts. Screening of the electrical double layer could not explain the results at such low ion concentrations. To understand cellulose-ion interactions, we used computational molecular dynamics simulations. The results provide an explanation by the effect of ions on the structure of the hydration layers of the cellulose. Understanding how and why ions affect the properties of native CNF hydrogels can help in for example manufacture of CNFs and when using CNFs as material components, substrates for enzymes, or as rheology modifiers. Ion-effects on the hydration layer of cellulose may also be important for more fundamental understanding of interfacial interactions of cellulose with water under different conditions.
Graphical abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-022-04664-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bioorganic Chemistry ; Cellulose ; Cellulose fibers ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Glass ; Hydration ; Hydrogels ; Low concentrations ; Molecular dynamics ; Nanofibers ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Rheological properties ; Rheology ; Sodium acetate ; Sodium thiocyanate ; Substrates ; Sustainable Development</subject><ispartof>Cellulose (London), 2022-07, Vol.29 (11), p.6109-6121</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b5177a6340184505c5211cf14e80a7a176d999e6e9da96201b2a0f67bf51f7f03</citedby><cites>FETCH-LOGICAL-c363t-b5177a6340184505c5211cf14e80a7a176d999e6e9da96201b2a0f67bf51f7f03</cites><orcidid>0000-0002-9248-430X ; 0000-0003-4087-3837 ; 0000-0001-5710-9283 ; 0000-0002-9408-7009 ; 0000-0002-7271-6441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-022-04664-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-022-04664-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Arola, Suvi</creatorcontrib><creatorcontrib>Kou, Zhennan</creatorcontrib><creatorcontrib>Rooijakkers, Bart J. M.</creatorcontrib><creatorcontrib>Velagapudi, Rama</creatorcontrib><creatorcontrib>Sammalkorpi, Maria</creatorcontrib><creatorcontrib>Linder, Markus B.</creatorcontrib><title>On the mechanism for the highly sensitive response of cellulose nanofiber hydrogels to the presence of ionic solutes</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Hydrogels formed by cellulose nanofibers (CNFs) find use in a variety of applications. CNF hydrogels generally stiffen and ultimately flocculate with increasing salt concentrations. While charge repulsion explains the behavior of nanocellulose variants that have been stabilized by charged groups, it has been a puzzle why ions have such a pronounced effect also on CNFs with unmodified surfaces. We studied the effect of ionic solutes on native CNF hydrogels, and found that already at very low concentrations of around 1 mM, ions cause crowding of the hydrogels. The ionic solutes used were NaCl, Na
2
SO
4
, NaI, NaSCN, and sodium acetate. For the hydrogels, we used low densities of CNFs which lead to relatively weak gels that were highly sensitive to salts. Screening of the electrical double layer could not explain the results at such low ion concentrations. To understand cellulose-ion interactions, we used computational molecular dynamics simulations. The results provide an explanation by the effect of ions on the structure of the hydration layers of the cellulose. Understanding how and why ions affect the properties of native CNF hydrogels can help in for example manufacture of CNFs and when using CNFs as material components, substrates for enzymes, or as rheology modifiers. Ion-effects on the hydration layer of cellulose may also be important for more fundamental understanding of interfacial interactions of cellulose with water under different conditions.
Graphical abstract</description><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Glass</subject><subject>Hydration</subject><subject>Hydrogels</subject><subject>Low concentrations</subject><subject>Molecular dynamics</subject><subject>Nanofibers</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Sodium acetate</subject><subject>Sodium thiocyanate</subject><subject>Substrates</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9VJ2ibNURa_QNiLgreQdifbLt2kJq3L_ntrK3jzNGTyPu_AQ8g1g1sGIO8ig1xCApwnkAmRJYcTsmC55ElR8I9TsgAl1PidqnNyEeMOAJTkbEH6taN9jXSPVW1cE_fU-jBt6mZbt0ca0cWmb76QBoyddxGpt7TCth1aPz6ccd42JQZaHzfBb7GNtPdTQzcS6KoJaLxrKhp9O_QYL8mZNW3Eq9-5JO-PD2-r5-R1_fSyun9NqlSkfVLmTEoj0gxYkeWQVzlnrLIswwKMNEyKjVIKBaqNUYIDK7kBK2Rpc2alhXRJbubeLvjPAWOvd34IbjypuSiYSHMBYkzxOVUFH2NAq7vQ7E04agb6x66e7erRrp7s6sMIpTMUx7DbYvir_of6BqRyfvY</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Arola, Suvi</creator><creator>Kou, Zhennan</creator><creator>Rooijakkers, Bart J. M.</creator><creator>Velagapudi, Rama</creator><creator>Sammalkorpi, Maria</creator><creator>Linder, Markus B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9248-430X</orcidid><orcidid>https://orcid.org/0000-0003-4087-3837</orcidid><orcidid>https://orcid.org/0000-0001-5710-9283</orcidid><orcidid>https://orcid.org/0000-0002-9408-7009</orcidid><orcidid>https://orcid.org/0000-0002-7271-6441</orcidid></search><sort><creationdate>20220701</creationdate><title>On the mechanism for the highly sensitive response of cellulose nanofiber hydrogels to the presence of ionic solutes</title><author>Arola, Suvi ; Kou, Zhennan ; Rooijakkers, Bart J. M. ; Velagapudi, Rama ; Sammalkorpi, Maria ; Linder, Markus B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b5177a6340184505c5211cf14e80a7a176d999e6e9da96201b2a0f67bf51f7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Glass</topic><topic>Hydration</topic><topic>Hydrogels</topic><topic>Low concentrations</topic><topic>Molecular dynamics</topic><topic>Nanofibers</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Sodium acetate</topic><topic>Sodium thiocyanate</topic><topic>Substrates</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arola, Suvi</creatorcontrib><creatorcontrib>Kou, Zhennan</creatorcontrib><creatorcontrib>Rooijakkers, Bart J. M.</creatorcontrib><creatorcontrib>Velagapudi, Rama</creatorcontrib><creatorcontrib>Sammalkorpi, Maria</creatorcontrib><creatorcontrib>Linder, Markus B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arola, Suvi</au><au>Kou, Zhennan</au><au>Rooijakkers, Bart J. M.</au><au>Velagapudi, Rama</au><au>Sammalkorpi, Maria</au><au>Linder, Markus B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the mechanism for the highly sensitive response of cellulose nanofiber hydrogels to the presence of ionic solutes</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>29</volume><issue>11</issue><spage>6109</spage><epage>6121</epage><pages>6109-6121</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Hydrogels formed by cellulose nanofibers (CNFs) find use in a variety of applications. CNF hydrogels generally stiffen and ultimately flocculate with increasing salt concentrations. While charge repulsion explains the behavior of nanocellulose variants that have been stabilized by charged groups, it has been a puzzle why ions have such a pronounced effect also on CNFs with unmodified surfaces. We studied the effect of ionic solutes on native CNF hydrogels, and found that already at very low concentrations of around 1 mM, ions cause crowding of the hydrogels. The ionic solutes used were NaCl, Na
2
SO
4
, NaI, NaSCN, and sodium acetate. For the hydrogels, we used low densities of CNFs which lead to relatively weak gels that were highly sensitive to salts. Screening of the electrical double layer could not explain the results at such low ion concentrations. To understand cellulose-ion interactions, we used computational molecular dynamics simulations. The results provide an explanation by the effect of ions on the structure of the hydration layers of the cellulose. Understanding how and why ions affect the properties of native CNF hydrogels can help in for example manufacture of CNFs and when using CNFs as material components, substrates for enzymes, or as rheology modifiers. Ion-effects on the hydration layer of cellulose may also be important for more fundamental understanding of interfacial interactions of cellulose with water under different conditions.
Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-022-04664-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9248-430X</orcidid><orcidid>https://orcid.org/0000-0003-4087-3837</orcidid><orcidid>https://orcid.org/0000-0001-5710-9283</orcidid><orcidid>https://orcid.org/0000-0002-9408-7009</orcidid><orcidid>https://orcid.org/0000-0002-7271-6441</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2022-07, Vol.29 (11), p.6109-6121 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2681635606 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bioorganic Chemistry Cellulose Cellulose fibers Ceramics Chemistry Chemistry and Materials Science Composites Glass Hydration Hydrogels Low concentrations Molecular dynamics Nanofibers Natural Materials Organic Chemistry Original Research Physical Chemistry Polymer Sciences Rheological properties Rheology Sodium acetate Sodium thiocyanate Substrates Sustainable Development |
title | On the mechanism for the highly sensitive response of cellulose nanofiber hydrogels to the presence of ionic solutes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A30%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20mechanism%20for%20the%20highly%20sensitive%20response%20of%20cellulose%20nanofiber%20hydrogels%20to%20the%20presence%20of%20ionic%20solutes&rft.jtitle=Cellulose%20(London)&rft.au=Arola,%20Suvi&rft.date=2022-07-01&rft.volume=29&rft.issue=11&rft.spage=6109&rft.epage=6121&rft.pages=6109-6121&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-022-04664-w&rft_dat=%3Cproquest_cross%3E2681635606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681635606&rft_id=info:pmid/&rfr_iscdi=true |