Fusing Census and MC-CNN Cost Volumes for Stereo Matching
Stereo matching is an important and popular field of computer vision. Numerous researchers worldwide are devoted to enhancing the effectiveness of stereo matching applications. In stereo matching, determining the costs of matching is a critical step. This step generates a cost volume that quantifies...
Gespeichert in:
Veröffentlicht in: | Baltic Journal of Modern Computing 2022, Vol.10 (2), p.251-265 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 265 |
---|---|
container_issue | 2 |
container_start_page | 251 |
container_title | Baltic Journal of Modern Computing |
container_volume | 10 |
creator | Kivanc, Sahim Giray Sen, Baha Ok, Ali Ozgun Nar, Fatih |
description | Stereo matching is an important and popular field of computer vision. Numerous researchers worldwide are devoted to enhancing the effectiveness of stereo matching applications. In stereo matching, determining the costs of matching is a critical step. This step generates a cost volume that quantifies the similarity of pixels, and thereafter, it is processed further to generate the final disparity map. The purpose of this study is to improve stereo matching performance by fusing two different cost-volumes, namely Census and MC-CNN. The Census transform and Hamming distance are one of the most frequently used cost functions in conventional approaches. Besides, a matching cost volume generated using a deep learning technique called MC-CNN has been shown to extract more reliable features from images than conventional approaches. Thus, both of these cost computation strategies have a number of advantages and disadvantages. By including deep learning as a cost-volume, the advantages of these two distinct cost-volumes complement one another, resulting in a better cost-volume prior to applying the smoothing operation (e.g. Semi-global matching or More-global Matching). Our findings indicate that fusing costvolumes improves the stereo matching performance of nearly all of the benchmark stereo images we tested in the Middlebury dataset. |
doi_str_mv | 10.22364/bjmc.2022.10.2.11 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2681533613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681533613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-11a4c9bac35fb441aa64fee8a2017cd5509c2f3fb003b8f85be09449554efb4a3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EElXpH-BkiXPCrh_BOaKIAlJbDjyuluPa0KiJi50c-PckLQdOsxrN7EgfIdcIOWO8ELd109qcAWP5ZOWIZ2TGmJSZKiWc_7svySKlBgBQKs4UzEi5HNKu-6SV69KQqOm2dF1l1WZDq5B6-hH2Q-sS9SHS195FF-ja9PZrrFyRC2_2yS3-dE7elw9v1VO2enl8ru5XmWUAfYZohC1rY7n0tRBoTCG8c8owwDu7lRJKyzz3NQCvlVeydlAKUUop3FgwfE5uTn8PMXwPLvW6CUPsxknNCoWS8wL5mGKnlI0hpei8PsRda-KPRtBHSnqipCdKR0sj8l84OFlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681533613</pqid></control><display><type>article</type><title>Fusing Census and MC-CNN Cost Volumes for Stereo Matching</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kivanc, Sahim Giray ; Sen, Baha ; Ok, Ali Ozgun ; Nar, Fatih</creator><creatorcontrib>Kivanc, Sahim Giray ; Sen, Baha ; Ok, Ali Ozgun ; Nar, Fatih</creatorcontrib><description>Stereo matching is an important and popular field of computer vision. Numerous researchers worldwide are devoted to enhancing the effectiveness of stereo matching applications. In stereo matching, determining the costs of matching is a critical step. This step generates a cost volume that quantifies the similarity of pixels, and thereafter, it is processed further to generate the final disparity map. The purpose of this study is to improve stereo matching performance by fusing two different cost-volumes, namely Census and MC-CNN. The Census transform and Hamming distance are one of the most frequently used cost functions in conventional approaches. Besides, a matching cost volume generated using a deep learning technique called MC-CNN has been shown to extract more reliable features from images than conventional approaches. Thus, both of these cost computation strategies have a number of advantages and disadvantages. By including deep learning as a cost-volume, the advantages of these two distinct cost-volumes complement one another, resulting in a better cost-volume prior to applying the smoothing operation (e.g. Semi-global matching or More-global Matching). Our findings indicate that fusing costvolumes improves the stereo matching performance of nearly all of the benchmark stereo images we tested in the Middlebury dataset.</description><identifier>ISSN: 2255-8950</identifier><identifier>ISSN: 2255-8942</identifier><identifier>EISSN: 2255-8950</identifier><identifier>DOI: 10.22364/bjmc.2022.10.2.11</identifier><language>eng</language><publisher>Riga: University of Latvia</publisher><subject>Algorithms ; Census ; Censuses ; Computer vision ; Cost function ; Costs ; Datasets ; Deep learning ; Feature extraction ; Matching</subject><ispartof>Baltic Journal of Modern Computing, 2022, Vol.10 (2), p.251-265</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by-sa/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>Kivanc, Sahim Giray</creatorcontrib><creatorcontrib>Sen, Baha</creatorcontrib><creatorcontrib>Ok, Ali Ozgun</creatorcontrib><creatorcontrib>Nar, Fatih</creatorcontrib><title>Fusing Census and MC-CNN Cost Volumes for Stereo Matching</title><title>Baltic Journal of Modern Computing</title><description>Stereo matching is an important and popular field of computer vision. Numerous researchers worldwide are devoted to enhancing the effectiveness of stereo matching applications. In stereo matching, determining the costs of matching is a critical step. This step generates a cost volume that quantifies the similarity of pixels, and thereafter, it is processed further to generate the final disparity map. The purpose of this study is to improve stereo matching performance by fusing two different cost-volumes, namely Census and MC-CNN. The Census transform and Hamming distance are one of the most frequently used cost functions in conventional approaches. Besides, a matching cost volume generated using a deep learning technique called MC-CNN has been shown to extract more reliable features from images than conventional approaches. Thus, both of these cost computation strategies have a number of advantages and disadvantages. By including deep learning as a cost-volume, the advantages of these two distinct cost-volumes complement one another, resulting in a better cost-volume prior to applying the smoothing operation (e.g. Semi-global matching or More-global Matching). Our findings indicate that fusing costvolumes improves the stereo matching performance of nearly all of the benchmark stereo images we tested in the Middlebury dataset.</description><subject>Algorithms</subject><subject>Census</subject><subject>Censuses</subject><subject>Computer vision</subject><subject>Cost function</subject><subject>Costs</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Matching</subject><issn>2255-8950</issn><issn>2255-8942</issn><issn>2255-8950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkEtPwzAQhC0EElXpH-BkiXPCrh_BOaKIAlJbDjyuluPa0KiJi50c-PckLQdOsxrN7EgfIdcIOWO8ELd109qcAWP5ZOWIZ2TGmJSZKiWc_7svySKlBgBQKs4UzEi5HNKu-6SV69KQqOm2dF1l1WZDq5B6-hH2Q-sS9SHS195FF-ja9PZrrFyRC2_2yS3-dE7elw9v1VO2enl8ru5XmWUAfYZohC1rY7n0tRBoTCG8c8owwDu7lRJKyzz3NQCvlVeydlAKUUop3FgwfE5uTn8PMXwPLvW6CUPsxknNCoWS8wL5mGKnlI0hpei8PsRda-KPRtBHSnqipCdKR0sj8l84OFlM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kivanc, Sahim Giray</creator><creator>Sen, Baha</creator><creator>Ok, Ali Ozgun</creator><creator>Nar, Fatih</creator><general>University of Latvia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2022</creationdate><title>Fusing Census and MC-CNN Cost Volumes for Stereo Matching</title><author>Kivanc, Sahim Giray ; Sen, Baha ; Ok, Ali Ozgun ; Nar, Fatih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-11a4c9bac35fb441aa64fee8a2017cd5509c2f3fb003b8f85be09449554efb4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Census</topic><topic>Censuses</topic><topic>Computer vision</topic><topic>Cost function</topic><topic>Costs</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kivanc, Sahim Giray</creatorcontrib><creatorcontrib>Sen, Baha</creatorcontrib><creatorcontrib>Ok, Ali Ozgun</creatorcontrib><creatorcontrib>Nar, Fatih</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Baltic Journal of Modern Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kivanc, Sahim Giray</au><au>Sen, Baha</au><au>Ok, Ali Ozgun</au><au>Nar, Fatih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusing Census and MC-CNN Cost Volumes for Stereo Matching</atitle><jtitle>Baltic Journal of Modern Computing</jtitle><date>2022</date><risdate>2022</risdate><volume>10</volume><issue>2</issue><spage>251</spage><epage>265</epage><pages>251-265</pages><issn>2255-8950</issn><issn>2255-8942</issn><eissn>2255-8950</eissn><abstract>Stereo matching is an important and popular field of computer vision. Numerous researchers worldwide are devoted to enhancing the effectiveness of stereo matching applications. In stereo matching, determining the costs of matching is a critical step. This step generates a cost volume that quantifies the similarity of pixels, and thereafter, it is processed further to generate the final disparity map. The purpose of this study is to improve stereo matching performance by fusing two different cost-volumes, namely Census and MC-CNN. The Census transform and Hamming distance are one of the most frequently used cost functions in conventional approaches. Besides, a matching cost volume generated using a deep learning technique called MC-CNN has been shown to extract more reliable features from images than conventional approaches. Thus, both of these cost computation strategies have a number of advantages and disadvantages. By including deep learning as a cost-volume, the advantages of these two distinct cost-volumes complement one another, resulting in a better cost-volume prior to applying the smoothing operation (e.g. Semi-global matching or More-global Matching). Our findings indicate that fusing costvolumes improves the stereo matching performance of nearly all of the benchmark stereo images we tested in the Middlebury dataset.</abstract><cop>Riga</cop><pub>University of Latvia</pub><doi>10.22364/bjmc.2022.10.2.11</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2255-8950 |
ispartof | Baltic Journal of Modern Computing, 2022, Vol.10 (2), p.251-265 |
issn | 2255-8950 2255-8942 2255-8950 |
language | eng |
recordid | cdi_proquest_journals_2681533613 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Census Censuses Computer vision Cost function Costs Datasets Deep learning Feature extraction Matching |
title | Fusing Census and MC-CNN Cost Volumes for Stereo Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusing%20Census%20and%20MC-CNN%20Cost%20Volumes%20for%20Stereo%20Matching&rft.jtitle=Baltic%20Journal%20of%20Modern%20Computing&rft.au=Kivanc,%20Sahim%20Giray&rft.date=2022&rft.volume=10&rft.issue=2&rft.spage=251&rft.epage=265&rft.pages=251-265&rft.issn=2255-8950&rft.eissn=2255-8950&rft_id=info:doi/10.22364/bjmc.2022.10.2.11&rft_dat=%3Cproquest_cross%3E2681533613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681533613&rft_id=info:pmid/&rfr_iscdi=true |