Fusing Census and MC-CNN Cost Volumes for Stereo Matching

Stereo matching is an important and popular field of computer vision. Numerous researchers worldwide are devoted to enhancing the effectiveness of stereo matching applications. In stereo matching, determining the costs of matching is a critical step. This step generates a cost volume that quantifies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Baltic Journal of Modern Computing 2022, Vol.10 (2), p.251-265
Hauptverfasser: Kivanc, Sahim Giray, Sen, Baha, Ok, Ali Ozgun, Nar, Fatih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 2
container_start_page 251
container_title Baltic Journal of Modern Computing
container_volume 10
creator Kivanc, Sahim Giray
Sen, Baha
Ok, Ali Ozgun
Nar, Fatih
description Stereo matching is an important and popular field of computer vision. Numerous researchers worldwide are devoted to enhancing the effectiveness of stereo matching applications. In stereo matching, determining the costs of matching is a critical step. This step generates a cost volume that quantifies the similarity of pixels, and thereafter, it is processed further to generate the final disparity map. The purpose of this study is to improve stereo matching performance by fusing two different cost-volumes, namely Census and MC-CNN. The Census transform and Hamming distance are one of the most frequently used cost functions in conventional approaches. Besides, a matching cost volume generated using a deep learning technique called MC-CNN has been shown to extract more reliable features from images than conventional approaches. Thus, both of these cost computation strategies have a number of advantages and disadvantages. By including deep learning as a cost-volume, the advantages of these two distinct cost-volumes complement one another, resulting in a better cost-volume prior to applying the smoothing operation (e.g. Semi-global matching or More-global Matching). Our findings indicate that fusing costvolumes improves the stereo matching performance of nearly all of the benchmark stereo images we tested in the Middlebury dataset.
doi_str_mv 10.22364/bjmc.2022.10.2.11
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2681533613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681533613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-11a4c9bac35fb441aa64fee8a2017cd5509c2f3fb003b8f85be09449554efb4a3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EElXpH-BkiXPCrh_BOaKIAlJbDjyuluPa0KiJi50c-PckLQdOsxrN7EgfIdcIOWO8ELd109qcAWP5ZOWIZ2TGmJSZKiWc_7svySKlBgBQKs4UzEi5HNKu-6SV69KQqOm2dF1l1WZDq5B6-hH2Q-sS9SHS195FF-ja9PZrrFyRC2_2yS3-dE7elw9v1VO2enl8ru5XmWUAfYZohC1rY7n0tRBoTCG8c8owwDu7lRJKyzz3NQCvlVeydlAKUUop3FgwfE5uTn8PMXwPLvW6CUPsxknNCoWS8wL5mGKnlI0hpei8PsRda-KPRtBHSnqipCdKR0sj8l84OFlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681533613</pqid></control><display><type>article</type><title>Fusing Census and MC-CNN Cost Volumes for Stereo Matching</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kivanc, Sahim Giray ; Sen, Baha ; Ok, Ali Ozgun ; Nar, Fatih</creator><creatorcontrib>Kivanc, Sahim Giray ; Sen, Baha ; Ok, Ali Ozgun ; Nar, Fatih</creatorcontrib><description>Stereo matching is an important and popular field of computer vision. Numerous researchers worldwide are devoted to enhancing the effectiveness of stereo matching applications. In stereo matching, determining the costs of matching is a critical step. This step generates a cost volume that quantifies the similarity of pixels, and thereafter, it is processed further to generate the final disparity map. The purpose of this study is to improve stereo matching performance by fusing two different cost-volumes, namely Census and MC-CNN. The Census transform and Hamming distance are one of the most frequently used cost functions in conventional approaches. Besides, a matching cost volume generated using a deep learning technique called MC-CNN has been shown to extract more reliable features from images than conventional approaches. Thus, both of these cost computation strategies have a number of advantages and disadvantages. By including deep learning as a cost-volume, the advantages of these two distinct cost-volumes complement one another, resulting in a better cost-volume prior to applying the smoothing operation (e.g. Semi-global matching or More-global Matching). Our findings indicate that fusing costvolumes improves the stereo matching performance of nearly all of the benchmark stereo images we tested in the Middlebury dataset.</description><identifier>ISSN: 2255-8950</identifier><identifier>ISSN: 2255-8942</identifier><identifier>EISSN: 2255-8950</identifier><identifier>DOI: 10.22364/bjmc.2022.10.2.11</identifier><language>eng</language><publisher>Riga: University of Latvia</publisher><subject>Algorithms ; Census ; Censuses ; Computer vision ; Cost function ; Costs ; Datasets ; Deep learning ; Feature extraction ; Matching</subject><ispartof>Baltic Journal of Modern Computing, 2022, Vol.10 (2), p.251-265</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by-sa/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>Kivanc, Sahim Giray</creatorcontrib><creatorcontrib>Sen, Baha</creatorcontrib><creatorcontrib>Ok, Ali Ozgun</creatorcontrib><creatorcontrib>Nar, Fatih</creatorcontrib><title>Fusing Census and MC-CNN Cost Volumes for Stereo Matching</title><title>Baltic Journal of Modern Computing</title><description>Stereo matching is an important and popular field of computer vision. Numerous researchers worldwide are devoted to enhancing the effectiveness of stereo matching applications. In stereo matching, determining the costs of matching is a critical step. This step generates a cost volume that quantifies the similarity of pixels, and thereafter, it is processed further to generate the final disparity map. The purpose of this study is to improve stereo matching performance by fusing two different cost-volumes, namely Census and MC-CNN. The Census transform and Hamming distance are one of the most frequently used cost functions in conventional approaches. Besides, a matching cost volume generated using a deep learning technique called MC-CNN has been shown to extract more reliable features from images than conventional approaches. Thus, both of these cost computation strategies have a number of advantages and disadvantages. By including deep learning as a cost-volume, the advantages of these two distinct cost-volumes complement one another, resulting in a better cost-volume prior to applying the smoothing operation (e.g. Semi-global matching or More-global Matching). Our findings indicate that fusing costvolumes improves the stereo matching performance of nearly all of the benchmark stereo images we tested in the Middlebury dataset.</description><subject>Algorithms</subject><subject>Census</subject><subject>Censuses</subject><subject>Computer vision</subject><subject>Cost function</subject><subject>Costs</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Matching</subject><issn>2255-8950</issn><issn>2255-8942</issn><issn>2255-8950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkEtPwzAQhC0EElXpH-BkiXPCrh_BOaKIAlJbDjyuluPa0KiJi50c-PckLQdOsxrN7EgfIdcIOWO8ELd109qcAWP5ZOWIZ2TGmJSZKiWc_7svySKlBgBQKs4UzEi5HNKu-6SV69KQqOm2dF1l1WZDq5B6-hH2Q-sS9SHS195FF-ja9PZrrFyRC2_2yS3-dE7elw9v1VO2enl8ru5XmWUAfYZohC1rY7n0tRBoTCG8c8owwDu7lRJKyzz3NQCvlVeydlAKUUop3FgwfE5uTn8PMXwPLvW6CUPsxknNCoWS8wL5mGKnlI0hpei8PsRda-KPRtBHSnqipCdKR0sj8l84OFlM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kivanc, Sahim Giray</creator><creator>Sen, Baha</creator><creator>Ok, Ali Ozgun</creator><creator>Nar, Fatih</creator><general>University of Latvia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2022</creationdate><title>Fusing Census and MC-CNN Cost Volumes for Stereo Matching</title><author>Kivanc, Sahim Giray ; Sen, Baha ; Ok, Ali Ozgun ; Nar, Fatih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-11a4c9bac35fb441aa64fee8a2017cd5509c2f3fb003b8f85be09449554efb4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Census</topic><topic>Censuses</topic><topic>Computer vision</topic><topic>Cost function</topic><topic>Costs</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kivanc, Sahim Giray</creatorcontrib><creatorcontrib>Sen, Baha</creatorcontrib><creatorcontrib>Ok, Ali Ozgun</creatorcontrib><creatorcontrib>Nar, Fatih</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Baltic Journal of Modern Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kivanc, Sahim Giray</au><au>Sen, Baha</au><au>Ok, Ali Ozgun</au><au>Nar, Fatih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusing Census and MC-CNN Cost Volumes for Stereo Matching</atitle><jtitle>Baltic Journal of Modern Computing</jtitle><date>2022</date><risdate>2022</risdate><volume>10</volume><issue>2</issue><spage>251</spage><epage>265</epage><pages>251-265</pages><issn>2255-8950</issn><issn>2255-8942</issn><eissn>2255-8950</eissn><abstract>Stereo matching is an important and popular field of computer vision. Numerous researchers worldwide are devoted to enhancing the effectiveness of stereo matching applications. In stereo matching, determining the costs of matching is a critical step. This step generates a cost volume that quantifies the similarity of pixels, and thereafter, it is processed further to generate the final disparity map. The purpose of this study is to improve stereo matching performance by fusing two different cost-volumes, namely Census and MC-CNN. The Census transform and Hamming distance are one of the most frequently used cost functions in conventional approaches. Besides, a matching cost volume generated using a deep learning technique called MC-CNN has been shown to extract more reliable features from images than conventional approaches. Thus, both of these cost computation strategies have a number of advantages and disadvantages. By including deep learning as a cost-volume, the advantages of these two distinct cost-volumes complement one another, resulting in a better cost-volume prior to applying the smoothing operation (e.g. Semi-global matching or More-global Matching). Our findings indicate that fusing costvolumes improves the stereo matching performance of nearly all of the benchmark stereo images we tested in the Middlebury dataset.</abstract><cop>Riga</cop><pub>University of Latvia</pub><doi>10.22364/bjmc.2022.10.2.11</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2255-8950
ispartof Baltic Journal of Modern Computing, 2022, Vol.10 (2), p.251-265
issn 2255-8950
2255-8942
2255-8950
language eng
recordid cdi_proquest_journals_2681533613
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Census
Censuses
Computer vision
Cost function
Costs
Datasets
Deep learning
Feature extraction
Matching
title Fusing Census and MC-CNN Cost Volumes for Stereo Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusing%20Census%20and%20MC-CNN%20Cost%20Volumes%20for%20Stereo%20Matching&rft.jtitle=Baltic%20Journal%20of%20Modern%20Computing&rft.au=Kivanc,%20Sahim%20Giray&rft.date=2022&rft.volume=10&rft.issue=2&rft.spage=251&rft.epage=265&rft.pages=251-265&rft.issn=2255-8950&rft.eissn=2255-8950&rft_id=info:doi/10.22364/bjmc.2022.10.2.11&rft_dat=%3Cproquest_cross%3E2681533613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681533613&rft_id=info:pmid/&rfr_iscdi=true