Optimal crashing of an activity network with disruptions

In this paper, we consider an optimization problem involving crashing an activity network under a single disruption. A disruption is an event whose magnitude and timing are random. When a disruption occurs, the duration of an activity that has yet to start—or alternatively, yet to complete—can chang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2022-07, Vol.194 (1-2), p.1113-1162
Hauptverfasser: Yang, Haoxiang, Morton, David P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1162
container_issue 1-2
container_start_page 1113
container_title Mathematical programming
container_volume 194
creator Yang, Haoxiang
Morton, David P.
description In this paper, we consider an optimization problem involving crashing an activity network under a single disruption. A disruption is an event whose magnitude and timing are random. When a disruption occurs, the duration of an activity that has yet to start—or alternatively, yet to complete—can change. We formulate a two-stage stochastic mixed-integer program, in which the timing of the stage is random. In our model, the recourse problem is a mixed-integer program. We prove the problem is NP-hard, and using simple examples, we illustrate properties that differ from the problem’s deterministic counterpart. Obtaining a reasonably tight optimality gap can require a large number of samples in a sample average approximation, leading to large-scale instances that are computationally expensive to solve. Therefore, we develop a branch-and-cut decomposition algorithm, in which spatial branching of the first stage continuous variables and linear programming approximations for the recourse problem are sequentially tightened. We test our decomposition algorithm with multiple improvements and show it can significantly reduce solution time over solving the problem directly.
doi_str_mv 10.1007/s10107-021-01670-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2681496112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A708482455</galeid><sourcerecordid>A708482455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d96af9ef55c954ae483fcc989a36783a8c3a94ad24f7f60f6ec138dd9292595c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59TJ5ybHUvyCQi96DiGbtKntbk22tv33RlfwJnMYGN5nZngQuiUwIQD1fSZAoMZACQYia8DHMzQinEnMJZfnaARABRaSwCW6ynkNAIQpNUJqsevj1m4ql2xexXZZdaGybWVdHz9jf6pa3x-69F4dYr-qmpjTvgBdm6_RRbCb7G9--xi9PT68zp7xfPH0MpvOsWOge9xoaYP2QQinBbeeKxac00pbJmvFrHLMam4bykMdJATpXXmsaTTVVGjh2BjdDXt3qfvY-9ybdbdPbTlpqFSEa0kILanJkFrajTexDV2frCvV-G10XetDLPNpDYoryoUoAB0Al7qckw9ml4qHdDIEzLdSMyg1Ran5UWqOBWIDlEu4Xfr098s_1Bco-nlD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681496112</pqid></control><display><type>article</type><title>Optimal crashing of an activity network with disruptions</title><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Yang, Haoxiang ; Morton, David P.</creator><creatorcontrib>Yang, Haoxiang ; Morton, David P.</creatorcontrib><description>In this paper, we consider an optimization problem involving crashing an activity network under a single disruption. A disruption is an event whose magnitude and timing are random. When a disruption occurs, the duration of an activity that has yet to start—or alternatively, yet to complete—can change. We formulate a two-stage stochastic mixed-integer program, in which the timing of the stage is random. In our model, the recourse problem is a mixed-integer program. We prove the problem is NP-hard, and using simple examples, we illustrate properties that differ from the problem’s deterministic counterpart. Obtaining a reasonably tight optimality gap can require a large number of samples in a sample average approximation, leading to large-scale instances that are computationally expensive to solve. Therefore, we develop a branch-and-cut decomposition algorithm, in which spatial branching of the first stage continuous variables and linear programming approximations for the recourse problem are sequentially tightened. We test our decomposition algorithm with multiple improvements and show it can significantly reduce solution time over solving the problem directly.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-021-01670-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Continuity (mathematics) ; Decomposition ; Disruption ; Full Length Paper ; Linear programming ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Mixed integer ; Numerical Analysis ; Optimization ; Theoretical</subject><ispartof>Mathematical programming, 2022-07, Vol.194 (1-2), p.1113-1162</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-d96af9ef55c954ae483fcc989a36783a8c3a94ad24f7f60f6ec138dd9292595c3</cites><orcidid>0000-0001-6001-9078 ; 0000-0001-5291-9834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-021-01670-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-021-01670-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, Haoxiang</creatorcontrib><creatorcontrib>Morton, David P.</creatorcontrib><title>Optimal crashing of an activity network with disruptions</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>In this paper, we consider an optimization problem involving crashing an activity network under a single disruption. A disruption is an event whose magnitude and timing are random. When a disruption occurs, the duration of an activity that has yet to start—or alternatively, yet to complete—can change. We formulate a two-stage stochastic mixed-integer program, in which the timing of the stage is random. In our model, the recourse problem is a mixed-integer program. We prove the problem is NP-hard, and using simple examples, we illustrate properties that differ from the problem’s deterministic counterpart. Obtaining a reasonably tight optimality gap can require a large number of samples in a sample average approximation, leading to large-scale instances that are computationally expensive to solve. Therefore, we develop a branch-and-cut decomposition algorithm, in which spatial branching of the first stage continuous variables and linear programming approximations for the recourse problem are sequentially tightened. We test our decomposition algorithm with multiple improvements and show it can significantly reduce solution time over solving the problem directly.</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Continuity (mathematics)</subject><subject>Decomposition</subject><subject>Disruption</subject><subject>Full Length Paper</subject><subject>Linear programming</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Mixed integer</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59TJ5ybHUvyCQi96DiGbtKntbk22tv33RlfwJnMYGN5nZngQuiUwIQD1fSZAoMZACQYia8DHMzQinEnMJZfnaARABRaSwCW6ynkNAIQpNUJqsevj1m4ql2xexXZZdaGybWVdHz9jf6pa3x-69F4dYr-qmpjTvgBdm6_RRbCb7G9--xi9PT68zp7xfPH0MpvOsWOge9xoaYP2QQinBbeeKxac00pbJmvFrHLMam4bykMdJATpXXmsaTTVVGjh2BjdDXt3qfvY-9ybdbdPbTlpqFSEa0kILanJkFrajTexDV2frCvV-G10XetDLPNpDYoryoUoAB0Al7qckw9ml4qHdDIEzLdSMyg1Ran5UWqOBWIDlEu4Xfr098s_1Bco-nlD</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Yang, Haoxiang</creator><creator>Morton, David P.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6001-9078</orcidid><orcidid>https://orcid.org/0000-0001-5291-9834</orcidid></search><sort><creationdate>20220701</creationdate><title>Optimal crashing of an activity network with disruptions</title><author>Yang, Haoxiang ; Morton, David P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d96af9ef55c954ae483fcc989a36783a8c3a94ad24f7f60f6ec138dd9292595c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Continuity (mathematics)</topic><topic>Decomposition</topic><topic>Disruption</topic><topic>Full Length Paper</topic><topic>Linear programming</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Mixed integer</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haoxiang</creatorcontrib><creatorcontrib>Morton, David P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haoxiang</au><au>Morton, David P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal crashing of an activity network with disruptions</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>194</volume><issue>1-2</issue><spage>1113</spage><epage>1162</epage><pages>1113-1162</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>In this paper, we consider an optimization problem involving crashing an activity network under a single disruption. A disruption is an event whose magnitude and timing are random. When a disruption occurs, the duration of an activity that has yet to start—or alternatively, yet to complete—can change. We formulate a two-stage stochastic mixed-integer program, in which the timing of the stage is random. In our model, the recourse problem is a mixed-integer program. We prove the problem is NP-hard, and using simple examples, we illustrate properties that differ from the problem’s deterministic counterpart. Obtaining a reasonably tight optimality gap can require a large number of samples in a sample average approximation, leading to large-scale instances that are computationally expensive to solve. Therefore, we develop a branch-and-cut decomposition algorithm, in which spatial branching of the first stage continuous variables and linear programming approximations for the recourse problem are sequentially tightened. We test our decomposition algorithm with multiple improvements and show it can significantly reduce solution time over solving the problem directly.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-021-01670-x</doi><tpages>50</tpages><orcidid>https://orcid.org/0000-0001-6001-9078</orcidid><orcidid>https://orcid.org/0000-0001-5291-9834</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2022-07, Vol.194 (1-2), p.1113-1162
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_2681496112
source SpringerLink Journals; EBSCOhost Business Source Complete
subjects Algorithms
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Continuity (mathematics)
Decomposition
Disruption
Full Length Paper
Linear programming
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Mixed integer
Numerical Analysis
Optimization
Theoretical
title Optimal crashing of an activity network with disruptions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20crashing%20of%20an%20activity%20network%20with%20disruptions&rft.jtitle=Mathematical%20programming&rft.au=Yang,%20Haoxiang&rft.date=2022-07-01&rft.volume=194&rft.issue=1-2&rft.spage=1113&rft.epage=1162&rft.pages=1113-1162&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-021-01670-x&rft_dat=%3Cgale_proqu%3EA708482455%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681496112&rft_id=info:pmid/&rft_galeid=A708482455&rfr_iscdi=true