Optimal crashing of an activity network with disruptions
In this paper, we consider an optimization problem involving crashing an activity network under a single disruption. A disruption is an event whose magnitude and timing are random. When a disruption occurs, the duration of an activity that has yet to start—or alternatively, yet to complete—can chang...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2022-07, Vol.194 (1-2), p.1113-1162 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1162 |
---|---|
container_issue | 1-2 |
container_start_page | 1113 |
container_title | Mathematical programming |
container_volume | 194 |
creator | Yang, Haoxiang Morton, David P. |
description | In this paper, we consider an optimization problem involving crashing an activity network under a single disruption. A disruption is an event whose magnitude and timing are random. When a disruption occurs, the duration of an activity that has yet to start—or alternatively, yet to complete—can change. We formulate a two-stage stochastic mixed-integer program, in which the timing of the stage is random. In our model, the recourse problem is a mixed-integer program. We prove the problem is NP-hard, and using simple examples, we illustrate properties that differ from the problem’s deterministic counterpart. Obtaining a reasonably tight optimality gap can require a large number of samples in a sample average approximation, leading to large-scale instances that are computationally expensive to solve. Therefore, we develop a branch-and-cut decomposition algorithm, in which spatial branching of the first stage continuous variables and linear programming approximations for the recourse problem are sequentially tightened. We test our decomposition algorithm with multiple improvements and show it can significantly reduce solution time over solving the problem directly. |
doi_str_mv | 10.1007/s10107-021-01670-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2681496112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A708482455</galeid><sourcerecordid>A708482455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d96af9ef55c954ae483fcc989a36783a8c3a94ad24f7f60f6ec138dd9292595c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59TJ5ybHUvyCQi96DiGbtKntbk22tv33RlfwJnMYGN5nZngQuiUwIQD1fSZAoMZACQYia8DHMzQinEnMJZfnaARABRaSwCW6ynkNAIQpNUJqsevj1m4ql2xexXZZdaGybWVdHz9jf6pa3x-69F4dYr-qmpjTvgBdm6_RRbCb7G9--xi9PT68zp7xfPH0MpvOsWOge9xoaYP2QQinBbeeKxac00pbJmvFrHLMam4bykMdJATpXXmsaTTVVGjh2BjdDXt3qfvY-9ybdbdPbTlpqFSEa0kILanJkFrajTexDV2frCvV-G10XetDLPNpDYoryoUoAB0Al7qckw9ml4qHdDIEzLdSMyg1Ran5UWqOBWIDlEu4Xfr098s_1Bco-nlD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681496112</pqid></control><display><type>article</type><title>Optimal crashing of an activity network with disruptions</title><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Yang, Haoxiang ; Morton, David P.</creator><creatorcontrib>Yang, Haoxiang ; Morton, David P.</creatorcontrib><description>In this paper, we consider an optimization problem involving crashing an activity network under a single disruption. A disruption is an event whose magnitude and timing are random. When a disruption occurs, the duration of an activity that has yet to start—or alternatively, yet to complete—can change. We formulate a two-stage stochastic mixed-integer program, in which the timing of the stage is random. In our model, the recourse problem is a mixed-integer program. We prove the problem is NP-hard, and using simple examples, we illustrate properties that differ from the problem’s deterministic counterpart. Obtaining a reasonably tight optimality gap can require a large number of samples in a sample average approximation, leading to large-scale instances that are computationally expensive to solve. Therefore, we develop a branch-and-cut decomposition algorithm, in which spatial branching of the first stage continuous variables and linear programming approximations for the recourse problem are sequentially tightened. We test our decomposition algorithm with multiple improvements and show it can significantly reduce solution time over solving the problem directly.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-021-01670-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Continuity (mathematics) ; Decomposition ; Disruption ; Full Length Paper ; Linear programming ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Mixed integer ; Numerical Analysis ; Optimization ; Theoretical</subject><ispartof>Mathematical programming, 2022-07, Vol.194 (1-2), p.1113-1162</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-d96af9ef55c954ae483fcc989a36783a8c3a94ad24f7f60f6ec138dd9292595c3</cites><orcidid>0000-0001-6001-9078 ; 0000-0001-5291-9834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-021-01670-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-021-01670-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, Haoxiang</creatorcontrib><creatorcontrib>Morton, David P.</creatorcontrib><title>Optimal crashing of an activity network with disruptions</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>In this paper, we consider an optimization problem involving crashing an activity network under a single disruption. A disruption is an event whose magnitude and timing are random. When a disruption occurs, the duration of an activity that has yet to start—or alternatively, yet to complete—can change. We formulate a two-stage stochastic mixed-integer program, in which the timing of the stage is random. In our model, the recourse problem is a mixed-integer program. We prove the problem is NP-hard, and using simple examples, we illustrate properties that differ from the problem’s deterministic counterpart. Obtaining a reasonably tight optimality gap can require a large number of samples in a sample average approximation, leading to large-scale instances that are computationally expensive to solve. Therefore, we develop a branch-and-cut decomposition algorithm, in which spatial branching of the first stage continuous variables and linear programming approximations for the recourse problem are sequentially tightened. We test our decomposition algorithm with multiple improvements and show it can significantly reduce solution time over solving the problem directly.</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Continuity (mathematics)</subject><subject>Decomposition</subject><subject>Disruption</subject><subject>Full Length Paper</subject><subject>Linear programming</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Mixed integer</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59TJ5ybHUvyCQi96DiGbtKntbk22tv33RlfwJnMYGN5nZngQuiUwIQD1fSZAoMZACQYia8DHMzQinEnMJZfnaARABRaSwCW6ynkNAIQpNUJqsevj1m4ql2xexXZZdaGybWVdHz9jf6pa3x-69F4dYr-qmpjTvgBdm6_RRbCb7G9--xi9PT68zp7xfPH0MpvOsWOge9xoaYP2QQinBbeeKxac00pbJmvFrHLMam4bykMdJATpXXmsaTTVVGjh2BjdDXt3qfvY-9ybdbdPbTlpqFSEa0kILanJkFrajTexDV2frCvV-G10XetDLPNpDYoryoUoAB0Al7qckw9ml4qHdDIEzLdSMyg1Ran5UWqOBWIDlEu4Xfr098s_1Bco-nlD</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Yang, Haoxiang</creator><creator>Morton, David P.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6001-9078</orcidid><orcidid>https://orcid.org/0000-0001-5291-9834</orcidid></search><sort><creationdate>20220701</creationdate><title>Optimal crashing of an activity network with disruptions</title><author>Yang, Haoxiang ; Morton, David P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d96af9ef55c954ae483fcc989a36783a8c3a94ad24f7f60f6ec138dd9292595c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Continuity (mathematics)</topic><topic>Decomposition</topic><topic>Disruption</topic><topic>Full Length Paper</topic><topic>Linear programming</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Mixed integer</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haoxiang</creatorcontrib><creatorcontrib>Morton, David P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haoxiang</au><au>Morton, David P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal crashing of an activity network with disruptions</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>194</volume><issue>1-2</issue><spage>1113</spage><epage>1162</epage><pages>1113-1162</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>In this paper, we consider an optimization problem involving crashing an activity network under a single disruption. A disruption is an event whose magnitude and timing are random. When a disruption occurs, the duration of an activity that has yet to start—or alternatively, yet to complete—can change. We formulate a two-stage stochastic mixed-integer program, in which the timing of the stage is random. In our model, the recourse problem is a mixed-integer program. We prove the problem is NP-hard, and using simple examples, we illustrate properties that differ from the problem’s deterministic counterpart. Obtaining a reasonably tight optimality gap can require a large number of samples in a sample average approximation, leading to large-scale instances that are computationally expensive to solve. Therefore, we develop a branch-and-cut decomposition algorithm, in which spatial branching of the first stage continuous variables and linear programming approximations for the recourse problem are sequentially tightened. We test our decomposition algorithm with multiple improvements and show it can significantly reduce solution time over solving the problem directly.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-021-01670-x</doi><tpages>50</tpages><orcidid>https://orcid.org/0000-0001-6001-9078</orcidid><orcidid>https://orcid.org/0000-0001-5291-9834</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2022-07, Vol.194 (1-2), p.1113-1162 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_journals_2681496112 |
source | SpringerLink Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Calculus of Variations and Optimal Control Optimization Combinatorics Continuity (mathematics) Decomposition Disruption Full Length Paper Linear programming Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Mixed integer Numerical Analysis Optimization Theoretical |
title | Optimal crashing of an activity network with disruptions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20crashing%20of%20an%20activity%20network%20with%20disruptions&rft.jtitle=Mathematical%20programming&rft.au=Yang,%20Haoxiang&rft.date=2022-07-01&rft.volume=194&rft.issue=1-2&rft.spage=1113&rft.epage=1162&rft.pages=1113-1162&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-021-01670-x&rft_dat=%3Cgale_proqu%3EA708482455%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681496112&rft_id=info:pmid/&rft_galeid=A708482455&rfr_iscdi=true |