G-YOLOX: A Lightweight Network for Detecting Vehicle Types

In recent years, vehicle type detection has had an important role in traffic management. A lightweight detection network based on multiscale ghost convolution called G-YOLOX is designed in this paper. It is suitable for practical applications for an embedded device. Specifically, 3×3 convolutions an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2022-06, Vol.2022, p.1-10
Hauptverfasser: Luo, Qiang, Wang, Junfan, Gao, Mingyu, Lin, Huipin, Zhou, Hongtao, Miao, Qiheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Journal of sensors
container_volume 2022
creator Luo, Qiang
Wang, Junfan
Gao, Mingyu
Lin, Huipin
Zhou, Hongtao
Miao, Qiheng
description In recent years, vehicle type detection has had an important role in traffic management. A lightweight detection network based on multiscale ghost convolution called G-YOLOX is designed in this paper. It is suitable for practical applications for an embedded device. Specifically, 3×3 convolutions and 5×5 and 7×7 ghost convolutions are combined to fully utilize different feature information. A series of linear transformations was designed to generate ghost feature maps to ensure that the network is lightweight. Moreover, a dataset of images showing different vehicles in a city environment was established. Altogether, 20,000 road scene images were collected, and seven categories of vehicles were identified. Extensive experiments with the benchmark datasets VOC2007 and VOC2012 and with our dataset demonstrate the superiority of the proposed G-YOLOX over the original YOLOX. The proposed G-YOLOX can achieve a nearly invariable mean average precision of 0.5, while the size of the weight file decreased by 40% and the number of parameters decreased by 67% compared to the original YOLOX network.
doi_str_mv 10.1155/2022/4488400
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680912181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680912181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-96374e259c4033cb15420d1fdc5b4995d0fd502a7442762da794172c9661a7763</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKc3P0DAo9YlaV6a3camUyj2MmWeQpema-dsa5JR9u1t6fDo5XmBH8-f5wfALUaPGDM2IYiQCaVRRBE6AyPMIxEIwqPzv5mtL8GVczuEeCjCcASmy-AziZP1FM5gXG4L35q-wjfj29p-wby2cGG80b6stvDDFKXeG7g6NsZdg4s83Ttzc-pj8P78tJq_BHGyfJ3P4kBTRH0guyRqCJPdGoZ6gxklKMN5ptmGSskylGcMkVRQSgQnWSokxYJoyTlOheDhGNwNdxtb_xyM82pXH2zVRaruNyQxwRHuqIeB0rZ2zppcNbb8Tu1RYaR6O6q3o052Ovx-wIuyytK2_J_-BRQrYFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680912181</pqid></control><display><type>article</type><title>G-YOLOX: A Lightweight Network for Detecting Vehicle Types</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Luo, Qiang ; Wang, Junfan ; Gao, Mingyu ; Lin, Huipin ; Zhou, Hongtao ; Miao, Qiheng</creator><contributor>Li, Yuxing ; Yuxing Li</contributor><creatorcontrib>Luo, Qiang ; Wang, Junfan ; Gao, Mingyu ; Lin, Huipin ; Zhou, Hongtao ; Miao, Qiheng ; Li, Yuxing ; Yuxing Li</creatorcontrib><description>In recent years, vehicle type detection has had an important role in traffic management. A lightweight detection network based on multiscale ghost convolution called G-YOLOX is designed in this paper. It is suitable for practical applications for an embedded device. Specifically, 3×3 convolutions and 5×5 and 7×7 ghost convolutions are combined to fully utilize different feature information. A series of linear transformations was designed to generate ghost feature maps to ensure that the network is lightweight. Moreover, a dataset of images showing different vehicles in a city environment was established. Altogether, 20,000 road scene images were collected, and seven categories of vehicles were identified. Extensive experiments with the benchmark datasets VOC2007 and VOC2012 and with our dataset demonstrate the superiority of the proposed G-YOLOX over the original YOLOX. The proposed G-YOLOX can achieve a nearly invariable mean average precision of 0.5, while the size of the weight file decreased by 40% and the number of parameters decreased by 67% compared to the original YOLOX network.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2022/4488400</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Cellular telephones ; Datasets ; Electronic devices ; Feature maps ; Ghosts ; Lightweight ; Linear transformations ; Neural networks ; Researchers ; Sensors ; Traffic management</subject><ispartof>Journal of sensors, 2022-06, Vol.2022, p.1-10</ispartof><rights>Copyright © 2022 Qiang Luo et al.</rights><rights>Copyright © 2022 Qiang Luo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-96374e259c4033cb15420d1fdc5b4995d0fd502a7442762da794172c9661a7763</citedby><cites>FETCH-LOGICAL-c404t-96374e259c4033cb15420d1fdc5b4995d0fd502a7442762da794172c9661a7763</cites><orcidid>0000-0001-6023-2434 ; 0000-0002-5930-9526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><contributor>Li, Yuxing</contributor><contributor>Yuxing Li</contributor><creatorcontrib>Luo, Qiang</creatorcontrib><creatorcontrib>Wang, Junfan</creatorcontrib><creatorcontrib>Gao, Mingyu</creatorcontrib><creatorcontrib>Lin, Huipin</creatorcontrib><creatorcontrib>Zhou, Hongtao</creatorcontrib><creatorcontrib>Miao, Qiheng</creatorcontrib><title>G-YOLOX: A Lightweight Network for Detecting Vehicle Types</title><title>Journal of sensors</title><description>In recent years, vehicle type detection has had an important role in traffic management. A lightweight detection network based on multiscale ghost convolution called G-YOLOX is designed in this paper. It is suitable for practical applications for an embedded device. Specifically, 3×3 convolutions and 5×5 and 7×7 ghost convolutions are combined to fully utilize different feature information. A series of linear transformations was designed to generate ghost feature maps to ensure that the network is lightweight. Moreover, a dataset of images showing different vehicles in a city environment was established. Altogether, 20,000 road scene images were collected, and seven categories of vehicles were identified. Extensive experiments with the benchmark datasets VOC2007 and VOC2012 and with our dataset demonstrate the superiority of the proposed G-YOLOX over the original YOLOX. The proposed G-YOLOX can achieve a nearly invariable mean average precision of 0.5, while the size of the weight file decreased by 40% and the number of parameters decreased by 67% compared to the original YOLOX network.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cellular telephones</subject><subject>Datasets</subject><subject>Electronic devices</subject><subject>Feature maps</subject><subject>Ghosts</subject><subject>Lightweight</subject><subject>Linear transformations</subject><subject>Neural networks</subject><subject>Researchers</subject><subject>Sensors</subject><subject>Traffic management</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LwzAYx4MoOKc3P0DAo9YlaV6a3camUyj2MmWeQpema-dsa5JR9u1t6fDo5XmBH8-f5wfALUaPGDM2IYiQCaVRRBE6AyPMIxEIwqPzv5mtL8GVczuEeCjCcASmy-AziZP1FM5gXG4L35q-wjfj29p-wby2cGG80b6stvDDFKXeG7g6NsZdg4s83Ttzc-pj8P78tJq_BHGyfJ3P4kBTRH0guyRqCJPdGoZ6gxklKMN5ptmGSskylGcMkVRQSgQnWSokxYJoyTlOheDhGNwNdxtb_xyM82pXH2zVRaruNyQxwRHuqIeB0rZ2zppcNbb8Tu1RYaR6O6q3o052Ovx-wIuyytK2_J_-BRQrYFQ</recordid><startdate>20220617</startdate><enddate>20220617</enddate><creator>Luo, Qiang</creator><creator>Wang, Junfan</creator><creator>Gao, Mingyu</creator><creator>Lin, Huipin</creator><creator>Zhou, Hongtao</creator><creator>Miao, Qiheng</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6023-2434</orcidid><orcidid>https://orcid.org/0000-0002-5930-9526</orcidid></search><sort><creationdate>20220617</creationdate><title>G-YOLOX: A Lightweight Network for Detecting Vehicle Types</title><author>Luo, Qiang ; Wang, Junfan ; Gao, Mingyu ; Lin, Huipin ; Zhou, Hongtao ; Miao, Qiheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-96374e259c4033cb15420d1fdc5b4995d0fd502a7442762da794172c9661a7763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cellular telephones</topic><topic>Datasets</topic><topic>Electronic devices</topic><topic>Feature maps</topic><topic>Ghosts</topic><topic>Lightweight</topic><topic>Linear transformations</topic><topic>Neural networks</topic><topic>Researchers</topic><topic>Sensors</topic><topic>Traffic management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Qiang</creatorcontrib><creatorcontrib>Wang, Junfan</creatorcontrib><creatorcontrib>Gao, Mingyu</creatorcontrib><creatorcontrib>Lin, Huipin</creatorcontrib><creatorcontrib>Zhou, Hongtao</creatorcontrib><creatorcontrib>Miao, Qiheng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Qiang</au><au>Wang, Junfan</au><au>Gao, Mingyu</au><au>Lin, Huipin</au><au>Zhou, Hongtao</au><au>Miao, Qiheng</au><au>Li, Yuxing</au><au>Yuxing Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>G-YOLOX: A Lightweight Network for Detecting Vehicle Types</atitle><jtitle>Journal of sensors</jtitle><date>2022-06-17</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>In recent years, vehicle type detection has had an important role in traffic management. A lightweight detection network based on multiscale ghost convolution called G-YOLOX is designed in this paper. It is suitable for practical applications for an embedded device. Specifically, 3×3 convolutions and 5×5 and 7×7 ghost convolutions are combined to fully utilize different feature information. A series of linear transformations was designed to generate ghost feature maps to ensure that the network is lightweight. Moreover, a dataset of images showing different vehicles in a city environment was established. Altogether, 20,000 road scene images were collected, and seven categories of vehicles were identified. Extensive experiments with the benchmark datasets VOC2007 and VOC2012 and with our dataset demonstrate the superiority of the proposed G-YOLOX over the original YOLOX. The proposed G-YOLOX can achieve a nearly invariable mean average precision of 0.5, while the size of the weight file decreased by 40% and the number of parameters decreased by 67% compared to the original YOLOX network.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/4488400</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6023-2434</orcidid><orcidid>https://orcid.org/0000-0002-5930-9526</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2022-06, Vol.2022, p.1-10
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_2680912181
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Accuracy
Algorithms
Cellular telephones
Datasets
Electronic devices
Feature maps
Ghosts
Lightweight
Linear transformations
Neural networks
Researchers
Sensors
Traffic management
title G-YOLOX: A Lightweight Network for Detecting Vehicle Types
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=G-YOLOX:%20A%20Lightweight%20Network%20for%20Detecting%20Vehicle%20Types&rft.jtitle=Journal%20of%20sensors&rft.au=Luo,%20Qiang&rft.date=2022-06-17&rft.volume=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2022/4488400&rft_dat=%3Cproquest_cross%3E2680912181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680912181&rft_id=info:pmid/&rfr_iscdi=true