G-YOLOX: A Lightweight Network for Detecting Vehicle Types
In recent years, vehicle type detection has had an important role in traffic management. A lightweight detection network based on multiscale ghost convolution called G-YOLOX is designed in this paper. It is suitable for practical applications for an embedded device. Specifically, 3×3 convolutions an...
Gespeichert in:
Veröffentlicht in: | Journal of sensors 2022-06, Vol.2022, p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Journal of sensors |
container_volume | 2022 |
creator | Luo, Qiang Wang, Junfan Gao, Mingyu Lin, Huipin Zhou, Hongtao Miao, Qiheng |
description | In recent years, vehicle type detection has had an important role in traffic management. A lightweight detection network based on multiscale ghost convolution called G-YOLOX is designed in this paper. It is suitable for practical applications for an embedded device. Specifically, 3×3 convolutions and 5×5 and 7×7 ghost convolutions are combined to fully utilize different feature information. A series of linear transformations was designed to generate ghost feature maps to ensure that the network is lightweight. Moreover, a dataset of images showing different vehicles in a city environment was established. Altogether, 20,000 road scene images were collected, and seven categories of vehicles were identified. Extensive experiments with the benchmark datasets VOC2007 and VOC2012 and with our dataset demonstrate the superiority of the proposed G-YOLOX over the original YOLOX. The proposed G-YOLOX can achieve a nearly invariable mean average precision of 0.5, while the size of the weight file decreased by 40% and the number of parameters decreased by 67% compared to the original YOLOX network. |
doi_str_mv | 10.1155/2022/4488400 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680912181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680912181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-96374e259c4033cb15420d1fdc5b4995d0fd502a7442762da794172c9661a7763</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKc3P0DAo9YlaV6a3camUyj2MmWeQpema-dsa5JR9u1t6fDo5XmBH8-f5wfALUaPGDM2IYiQCaVRRBE6AyPMIxEIwqPzv5mtL8GVczuEeCjCcASmy-AziZP1FM5gXG4L35q-wjfj29p-wby2cGG80b6stvDDFKXeG7g6NsZdg4s83Ttzc-pj8P78tJq_BHGyfJ3P4kBTRH0guyRqCJPdGoZ6gxklKMN5ptmGSskylGcMkVRQSgQnWSokxYJoyTlOheDhGNwNdxtb_xyM82pXH2zVRaruNyQxwRHuqIeB0rZ2zppcNbb8Tu1RYaR6O6q3o052Ovx-wIuyytK2_J_-BRQrYFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680912181</pqid></control><display><type>article</type><title>G-YOLOX: A Lightweight Network for Detecting Vehicle Types</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Luo, Qiang ; Wang, Junfan ; Gao, Mingyu ; Lin, Huipin ; Zhou, Hongtao ; Miao, Qiheng</creator><contributor>Li, Yuxing ; Yuxing Li</contributor><creatorcontrib>Luo, Qiang ; Wang, Junfan ; Gao, Mingyu ; Lin, Huipin ; Zhou, Hongtao ; Miao, Qiheng ; Li, Yuxing ; Yuxing Li</creatorcontrib><description>In recent years, vehicle type detection has had an important role in traffic management. A lightweight detection network based on multiscale ghost convolution called G-YOLOX is designed in this paper. It is suitable for practical applications for an embedded device. Specifically, 3×3 convolutions and 5×5 and 7×7 ghost convolutions are combined to fully utilize different feature information. A series of linear transformations was designed to generate ghost feature maps to ensure that the network is lightweight. Moreover, a dataset of images showing different vehicles in a city environment was established. Altogether, 20,000 road scene images were collected, and seven categories of vehicles were identified. Extensive experiments with the benchmark datasets VOC2007 and VOC2012 and with our dataset demonstrate the superiority of the proposed G-YOLOX over the original YOLOX. The proposed G-YOLOX can achieve a nearly invariable mean average precision of 0.5, while the size of the weight file decreased by 40% and the number of parameters decreased by 67% compared to the original YOLOX network.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2022/4488400</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Cellular telephones ; Datasets ; Electronic devices ; Feature maps ; Ghosts ; Lightweight ; Linear transformations ; Neural networks ; Researchers ; Sensors ; Traffic management</subject><ispartof>Journal of sensors, 2022-06, Vol.2022, p.1-10</ispartof><rights>Copyright © 2022 Qiang Luo et al.</rights><rights>Copyright © 2022 Qiang Luo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-96374e259c4033cb15420d1fdc5b4995d0fd502a7442762da794172c9661a7763</citedby><cites>FETCH-LOGICAL-c404t-96374e259c4033cb15420d1fdc5b4995d0fd502a7442762da794172c9661a7763</cites><orcidid>0000-0001-6023-2434 ; 0000-0002-5930-9526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><contributor>Li, Yuxing</contributor><contributor>Yuxing Li</contributor><creatorcontrib>Luo, Qiang</creatorcontrib><creatorcontrib>Wang, Junfan</creatorcontrib><creatorcontrib>Gao, Mingyu</creatorcontrib><creatorcontrib>Lin, Huipin</creatorcontrib><creatorcontrib>Zhou, Hongtao</creatorcontrib><creatorcontrib>Miao, Qiheng</creatorcontrib><title>G-YOLOX: A Lightweight Network for Detecting Vehicle Types</title><title>Journal of sensors</title><description>In recent years, vehicle type detection has had an important role in traffic management. A lightweight detection network based on multiscale ghost convolution called G-YOLOX is designed in this paper. It is suitable for practical applications for an embedded device. Specifically, 3×3 convolutions and 5×5 and 7×7 ghost convolutions are combined to fully utilize different feature information. A series of linear transformations was designed to generate ghost feature maps to ensure that the network is lightweight. Moreover, a dataset of images showing different vehicles in a city environment was established. Altogether, 20,000 road scene images were collected, and seven categories of vehicles were identified. Extensive experiments with the benchmark datasets VOC2007 and VOC2012 and with our dataset demonstrate the superiority of the proposed G-YOLOX over the original YOLOX. The proposed G-YOLOX can achieve a nearly invariable mean average precision of 0.5, while the size of the weight file decreased by 40% and the number of parameters decreased by 67% compared to the original YOLOX network.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cellular telephones</subject><subject>Datasets</subject><subject>Electronic devices</subject><subject>Feature maps</subject><subject>Ghosts</subject><subject>Lightweight</subject><subject>Linear transformations</subject><subject>Neural networks</subject><subject>Researchers</subject><subject>Sensors</subject><subject>Traffic management</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LwzAYx4MoOKc3P0DAo9YlaV6a3camUyj2MmWeQpema-dsa5JR9u1t6fDo5XmBH8-f5wfALUaPGDM2IYiQCaVRRBE6AyPMIxEIwqPzv5mtL8GVczuEeCjCcASmy-AziZP1FM5gXG4L35q-wjfj29p-wby2cGG80b6stvDDFKXeG7g6NsZdg4s83Ttzc-pj8P78tJq_BHGyfJ3P4kBTRH0guyRqCJPdGoZ6gxklKMN5ptmGSskylGcMkVRQSgQnWSokxYJoyTlOheDhGNwNdxtb_xyM82pXH2zVRaruNyQxwRHuqIeB0rZ2zppcNbb8Tu1RYaR6O6q3o052Ovx-wIuyytK2_J_-BRQrYFQ</recordid><startdate>20220617</startdate><enddate>20220617</enddate><creator>Luo, Qiang</creator><creator>Wang, Junfan</creator><creator>Gao, Mingyu</creator><creator>Lin, Huipin</creator><creator>Zhou, Hongtao</creator><creator>Miao, Qiheng</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6023-2434</orcidid><orcidid>https://orcid.org/0000-0002-5930-9526</orcidid></search><sort><creationdate>20220617</creationdate><title>G-YOLOX: A Lightweight Network for Detecting Vehicle Types</title><author>Luo, Qiang ; Wang, Junfan ; Gao, Mingyu ; Lin, Huipin ; Zhou, Hongtao ; Miao, Qiheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-96374e259c4033cb15420d1fdc5b4995d0fd502a7442762da794172c9661a7763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cellular telephones</topic><topic>Datasets</topic><topic>Electronic devices</topic><topic>Feature maps</topic><topic>Ghosts</topic><topic>Lightweight</topic><topic>Linear transformations</topic><topic>Neural networks</topic><topic>Researchers</topic><topic>Sensors</topic><topic>Traffic management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Qiang</creatorcontrib><creatorcontrib>Wang, Junfan</creatorcontrib><creatorcontrib>Gao, Mingyu</creatorcontrib><creatorcontrib>Lin, Huipin</creatorcontrib><creatorcontrib>Zhou, Hongtao</creatorcontrib><creatorcontrib>Miao, Qiheng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Qiang</au><au>Wang, Junfan</au><au>Gao, Mingyu</au><au>Lin, Huipin</au><au>Zhou, Hongtao</au><au>Miao, Qiheng</au><au>Li, Yuxing</au><au>Yuxing Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>G-YOLOX: A Lightweight Network for Detecting Vehicle Types</atitle><jtitle>Journal of sensors</jtitle><date>2022-06-17</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>In recent years, vehicle type detection has had an important role in traffic management. A lightweight detection network based on multiscale ghost convolution called G-YOLOX is designed in this paper. It is suitable for practical applications for an embedded device. Specifically, 3×3 convolutions and 5×5 and 7×7 ghost convolutions are combined to fully utilize different feature information. A series of linear transformations was designed to generate ghost feature maps to ensure that the network is lightweight. Moreover, a dataset of images showing different vehicles in a city environment was established. Altogether, 20,000 road scene images were collected, and seven categories of vehicles were identified. Extensive experiments with the benchmark datasets VOC2007 and VOC2012 and with our dataset demonstrate the superiority of the proposed G-YOLOX over the original YOLOX. The proposed G-YOLOX can achieve a nearly invariable mean average precision of 0.5, while the size of the weight file decreased by 40% and the number of parameters decreased by 67% compared to the original YOLOX network.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/4488400</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6023-2434</orcidid><orcidid>https://orcid.org/0000-0002-5930-9526</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-725X |
ispartof | Journal of sensors, 2022-06, Vol.2022, p.1-10 |
issn | 1687-725X 1687-7268 |
language | eng |
recordid | cdi_proquest_journals_2680912181 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Accuracy Algorithms Cellular telephones Datasets Electronic devices Feature maps Ghosts Lightweight Linear transformations Neural networks Researchers Sensors Traffic management |
title | G-YOLOX: A Lightweight Network for Detecting Vehicle Types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=G-YOLOX:%20A%20Lightweight%20Network%20for%20Detecting%20Vehicle%20Types&rft.jtitle=Journal%20of%20sensors&rft.au=Luo,%20Qiang&rft.date=2022-06-17&rft.volume=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2022/4488400&rft_dat=%3Cproquest_cross%3E2680912181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680912181&rft_id=info:pmid/&rfr_iscdi=true |