A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity

SUMMARY Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2022-06, Vol.110 (6), p.1791-1810
Hauptverfasser: Powell, Adrian F., Feder, Ari, Li, Jie, Schmidt, Maximilian H.‐W., Courtney, Lance, Alseekh, Saleh, Jobson, Emma M., Vogel, Alexander, Xu, Yimin, Lyon, David, Dumschott, Kathryn, McHale, Marcus, Sulpice, Ronan, Bao, Kan, Lal, Rohit, Duhan, Asha, Hallab, Asis, Denton, Alisandra K., Bolger, Marie E., Fernie, Alisdair R., Hind, Sarah R., Mueller, Lukas A., Martin, Gregory B., Fei, Zhangjun, Martin, Cathie, Giovannoni, James J., Strickler, Susan R., Usadel, Björn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1810
container_issue 6
container_start_page 1791
container_title The Plant journal : for cell and molecular biology
container_volume 110
creator Powell, Adrian F.
Feder, Ari
Li, Jie
Schmidt, Maximilian H.‐W.
Courtney, Lance
Alseekh, Saleh
Jobson, Emma M.
Vogel, Alexander
Xu, Yimin
Lyon, David
Dumschott, Kathryn
McHale, Marcus
Sulpice, Ronan
Bao, Kan
Lal, Rohit
Duhan, Asha
Hallab, Asis
Denton, Alisandra K.
Bolger, Marie E.
Fernie, Alisdair R.
Hind, Sarah R.
Mueller, Lukas A.
Martin, Gregory B.
Fei, Zhangjun
Martin, Cathie
Giovannoni, James J.
Strickler, Susan R.
Usadel, Björn
description SUMMARY Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome‐scale genome assembly for S. lycopersicoides LA2951, which contains 37 938 predicted protein‐coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of the S. lycopersicoides introgressions in a set of S. lycopersicum cv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity‐associated function of the clustered Pto gene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of the Aubergine locus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild species S. lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β‐cyclase whose function we demonstrate. Significance Statement We present a new genome resource for the wild species Solanum lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide introgression line boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β‐cyclase whose function we demonstrate.
doi_str_mv 10.1111/tpj.15770
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680523464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680523464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-ce510a5277b4a6d8c26296619b742b46cc562bd1feb59f6b7f972568f3b1e4293</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVpaDZpD_0DRdBTD070LfsYljQfLCTQFHozkjxOtViWa8mEza-P0k1yy1xmYB7eYR6EvlJyQkud5ml7QqXW5ANaUa5kxSn_8xGtSKNIpQVlh-gopS0hVHMlPqFDLgWlsmErFM_wrziYcQl42Lk4wZy8i76DhGfoYYbRAb6HMQbAvXF-8NnksvRj8vd_8_OQI84xmNLSBM6bwT9ChwNkY-PgU8Bm7LAPYRl93n1GB70ZEnx56cfo98_zu_Vltbm5uFqfbSrH65pUDiQlRjKtrTCqqx1TrFGKNlYLZoVyTipmO9qDlU2vrO4bzaSqe24pCNbwY_R9nzvN8d8CKbfbuMxjOdkyVRPJuFCiUD_2lJtjSuXhdpp9MPOupaR9VtsWte1_tYX99pK42ADdG_nqsgCne-DBD7B7P6m9u73eRz4BcRuExw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680523464</pqid></control><display><type>article</type><title>A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Powell, Adrian F. ; Feder, Ari ; Li, Jie ; Schmidt, Maximilian H.‐W. ; Courtney, Lance ; Alseekh, Saleh ; Jobson, Emma M. ; Vogel, Alexander ; Xu, Yimin ; Lyon, David ; Dumschott, Kathryn ; McHale, Marcus ; Sulpice, Ronan ; Bao, Kan ; Lal, Rohit ; Duhan, Asha ; Hallab, Asis ; Denton, Alisandra K. ; Bolger, Marie E. ; Fernie, Alisdair R. ; Hind, Sarah R. ; Mueller, Lukas A. ; Martin, Gregory B. ; Fei, Zhangjun ; Martin, Cathie ; Giovannoni, James J. ; Strickler, Susan R. ; Usadel, Björn</creator><creatorcontrib>Powell, Adrian F. ; Feder, Ari ; Li, Jie ; Schmidt, Maximilian H.‐W. ; Courtney, Lance ; Alseekh, Saleh ; Jobson, Emma M. ; Vogel, Alexander ; Xu, Yimin ; Lyon, David ; Dumschott, Kathryn ; McHale, Marcus ; Sulpice, Ronan ; Bao, Kan ; Lal, Rohit ; Duhan, Asha ; Hallab, Asis ; Denton, Alisandra K. ; Bolger, Marie E. ; Fernie, Alisdair R. ; Hind, Sarah R. ; Mueller, Lukas A. ; Martin, Gregory B. ; Fei, Zhangjun ; Martin, Cathie ; Giovannoni, James J. ; Strickler, Susan R. ; Usadel, Björn</creatorcontrib><description>SUMMARY Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome‐scale genome assembly for S. lycopersicoides LA2951, which contains 37 938 predicted protein‐coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of the S. lycopersicoides introgressions in a set of S. lycopersicum cv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity‐associated function of the clustered Pto gene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of the Aubergine locus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild species S. lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β‐cyclase whose function we demonstrate. Significance Statement We present a new genome resource for the wild species Solanum lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide introgression line boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β‐cyclase whose function we demonstrate.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.15770</identifier><identifier>PMID: 35411592</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>anthocyanin ; Anthocyanins ; Anthocyanins - genetics ; Assembly ; Carotenoids ; Chromosomes ; Chromosomes, Plant - genetics ; disease resistance ; drought ; Environmental stress ; Gene mapping ; Gene sequencing ; Genes ; genome ; Genomes ; Immunity ; Lycopene ; Nucleotide sequence ; Phenols ; Plant Breeding ; Quantitative trait loci ; Solanum - genetics ; Solanum lycopersicoides ; Solanum lycopersicum - genetics ; Synteny ; Tomatoes</subject><ispartof>The Plant journal : for cell and molecular biology, 2022-06, Vol.110 (6), p.1791-1810</ispartof><rights>2022 The Authors. published by Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-ce510a5277b4a6d8c26296619b742b46cc562bd1feb59f6b7f972568f3b1e4293</citedby><cites>FETCH-LOGICAL-c3880-ce510a5277b4a6d8c26296619b742b46cc562bd1feb59f6b7f972568f3b1e4293</cites><orcidid>0000-0001-8640-1750 ; 0000-0001-9684-1450 ; 0000-0003-2067-5235 ; 0000-0003-3090-0061 ; 0000-0003-0921-8041 ; 0000-0002-4617-3471 ; 0000-0002-0972-2515 ; 0000-0003-0044-6830 ; 0000-0002-1132-0224 ; 0000-0001-9000-335X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.15770$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.15770$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35411592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Powell, Adrian F.</creatorcontrib><creatorcontrib>Feder, Ari</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Schmidt, Maximilian H.‐W.</creatorcontrib><creatorcontrib>Courtney, Lance</creatorcontrib><creatorcontrib>Alseekh, Saleh</creatorcontrib><creatorcontrib>Jobson, Emma M.</creatorcontrib><creatorcontrib>Vogel, Alexander</creatorcontrib><creatorcontrib>Xu, Yimin</creatorcontrib><creatorcontrib>Lyon, David</creatorcontrib><creatorcontrib>Dumschott, Kathryn</creatorcontrib><creatorcontrib>McHale, Marcus</creatorcontrib><creatorcontrib>Sulpice, Ronan</creatorcontrib><creatorcontrib>Bao, Kan</creatorcontrib><creatorcontrib>Lal, Rohit</creatorcontrib><creatorcontrib>Duhan, Asha</creatorcontrib><creatorcontrib>Hallab, Asis</creatorcontrib><creatorcontrib>Denton, Alisandra K.</creatorcontrib><creatorcontrib>Bolger, Marie E.</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Hind, Sarah R.</creatorcontrib><creatorcontrib>Mueller, Lukas A.</creatorcontrib><creatorcontrib>Martin, Gregory B.</creatorcontrib><creatorcontrib>Fei, Zhangjun</creatorcontrib><creatorcontrib>Martin, Cathie</creatorcontrib><creatorcontrib>Giovannoni, James J.</creatorcontrib><creatorcontrib>Strickler, Susan R.</creatorcontrib><creatorcontrib>Usadel, Björn</creatorcontrib><title>A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome‐scale genome assembly for S. lycopersicoides LA2951, which contains 37 938 predicted protein‐coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of the S. lycopersicoides introgressions in a set of S. lycopersicum cv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity‐associated function of the clustered Pto gene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of the Aubergine locus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild species S. lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β‐cyclase whose function we demonstrate. Significance Statement We present a new genome resource for the wild species Solanum lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide introgression line boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β‐cyclase whose function we demonstrate.</description><subject>anthocyanin</subject><subject>Anthocyanins</subject><subject>Anthocyanins - genetics</subject><subject>Assembly</subject><subject>Carotenoids</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>disease resistance</subject><subject>drought</subject><subject>Environmental stress</subject><subject>Gene mapping</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>genome</subject><subject>Genomes</subject><subject>Immunity</subject><subject>Lycopene</subject><subject>Nucleotide sequence</subject><subject>Phenols</subject><subject>Plant Breeding</subject><subject>Quantitative trait loci</subject><subject>Solanum - genetics</subject><subject>Solanum lycopersicoides</subject><subject>Solanum lycopersicum - genetics</subject><subject>Synteny</subject><subject>Tomatoes</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kE1r3DAQhkVpaDZpD_0DRdBTD070LfsYljQfLCTQFHozkjxOtViWa8mEza-P0k1yy1xmYB7eYR6EvlJyQkud5ml7QqXW5ANaUa5kxSn_8xGtSKNIpQVlh-gopS0hVHMlPqFDLgWlsmErFM_wrziYcQl42Lk4wZy8i76DhGfoYYbRAb6HMQbAvXF-8NnksvRj8vd_8_OQI84xmNLSBM6bwT9ChwNkY-PgU8Bm7LAPYRl93n1GB70ZEnx56cfo98_zu_Vltbm5uFqfbSrH65pUDiQlRjKtrTCqqx1TrFGKNlYLZoVyTipmO9qDlU2vrO4bzaSqe24pCNbwY_R9nzvN8d8CKbfbuMxjOdkyVRPJuFCiUD_2lJtjSuXhdpp9MPOupaR9VtsWte1_tYX99pK42ADdG_nqsgCne-DBD7B7P6m9u73eRz4BcRuExw</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Powell, Adrian F.</creator><creator>Feder, Ari</creator><creator>Li, Jie</creator><creator>Schmidt, Maximilian H.‐W.</creator><creator>Courtney, Lance</creator><creator>Alseekh, Saleh</creator><creator>Jobson, Emma M.</creator><creator>Vogel, Alexander</creator><creator>Xu, Yimin</creator><creator>Lyon, David</creator><creator>Dumschott, Kathryn</creator><creator>McHale, Marcus</creator><creator>Sulpice, Ronan</creator><creator>Bao, Kan</creator><creator>Lal, Rohit</creator><creator>Duhan, Asha</creator><creator>Hallab, Asis</creator><creator>Denton, Alisandra K.</creator><creator>Bolger, Marie E.</creator><creator>Fernie, Alisdair R.</creator><creator>Hind, Sarah R.</creator><creator>Mueller, Lukas A.</creator><creator>Martin, Gregory B.</creator><creator>Fei, Zhangjun</creator><creator>Martin, Cathie</creator><creator>Giovannoni, James J.</creator><creator>Strickler, Susan R.</creator><creator>Usadel, Björn</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8640-1750</orcidid><orcidid>https://orcid.org/0000-0001-9684-1450</orcidid><orcidid>https://orcid.org/0000-0003-2067-5235</orcidid><orcidid>https://orcid.org/0000-0003-3090-0061</orcidid><orcidid>https://orcid.org/0000-0003-0921-8041</orcidid><orcidid>https://orcid.org/0000-0002-4617-3471</orcidid><orcidid>https://orcid.org/0000-0002-0972-2515</orcidid><orcidid>https://orcid.org/0000-0003-0044-6830</orcidid><orcidid>https://orcid.org/0000-0002-1132-0224</orcidid><orcidid>https://orcid.org/0000-0001-9000-335X</orcidid></search><sort><creationdate>202206</creationdate><title>A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity</title><author>Powell, Adrian F. ; Feder, Ari ; Li, Jie ; Schmidt, Maximilian H.‐W. ; Courtney, Lance ; Alseekh, Saleh ; Jobson, Emma M. ; Vogel, Alexander ; Xu, Yimin ; Lyon, David ; Dumschott, Kathryn ; McHale, Marcus ; Sulpice, Ronan ; Bao, Kan ; Lal, Rohit ; Duhan, Asha ; Hallab, Asis ; Denton, Alisandra K. ; Bolger, Marie E. ; Fernie, Alisdair R. ; Hind, Sarah R. ; Mueller, Lukas A. ; Martin, Gregory B. ; Fei, Zhangjun ; Martin, Cathie ; Giovannoni, James J. ; Strickler, Susan R. ; Usadel, Björn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-ce510a5277b4a6d8c26296619b742b46cc562bd1feb59f6b7f972568f3b1e4293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>anthocyanin</topic><topic>Anthocyanins</topic><topic>Anthocyanins - genetics</topic><topic>Assembly</topic><topic>Carotenoids</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>disease resistance</topic><topic>drought</topic><topic>Environmental stress</topic><topic>Gene mapping</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>genome</topic><topic>Genomes</topic><topic>Immunity</topic><topic>Lycopene</topic><topic>Nucleotide sequence</topic><topic>Phenols</topic><topic>Plant Breeding</topic><topic>Quantitative trait loci</topic><topic>Solanum - genetics</topic><topic>Solanum lycopersicoides</topic><topic>Solanum lycopersicum - genetics</topic><topic>Synteny</topic><topic>Tomatoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Powell, Adrian F.</creatorcontrib><creatorcontrib>Feder, Ari</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Schmidt, Maximilian H.‐W.</creatorcontrib><creatorcontrib>Courtney, Lance</creatorcontrib><creatorcontrib>Alseekh, Saleh</creatorcontrib><creatorcontrib>Jobson, Emma M.</creatorcontrib><creatorcontrib>Vogel, Alexander</creatorcontrib><creatorcontrib>Xu, Yimin</creatorcontrib><creatorcontrib>Lyon, David</creatorcontrib><creatorcontrib>Dumschott, Kathryn</creatorcontrib><creatorcontrib>McHale, Marcus</creatorcontrib><creatorcontrib>Sulpice, Ronan</creatorcontrib><creatorcontrib>Bao, Kan</creatorcontrib><creatorcontrib>Lal, Rohit</creatorcontrib><creatorcontrib>Duhan, Asha</creatorcontrib><creatorcontrib>Hallab, Asis</creatorcontrib><creatorcontrib>Denton, Alisandra K.</creatorcontrib><creatorcontrib>Bolger, Marie E.</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Hind, Sarah R.</creatorcontrib><creatorcontrib>Mueller, Lukas A.</creatorcontrib><creatorcontrib>Martin, Gregory B.</creatorcontrib><creatorcontrib>Fei, Zhangjun</creatorcontrib><creatorcontrib>Martin, Cathie</creatorcontrib><creatorcontrib>Giovannoni, James J.</creatorcontrib><creatorcontrib>Strickler, Susan R.</creatorcontrib><creatorcontrib>Usadel, Björn</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Powell, Adrian F.</au><au>Feder, Ari</au><au>Li, Jie</au><au>Schmidt, Maximilian H.‐W.</au><au>Courtney, Lance</au><au>Alseekh, Saleh</au><au>Jobson, Emma M.</au><au>Vogel, Alexander</au><au>Xu, Yimin</au><au>Lyon, David</au><au>Dumschott, Kathryn</au><au>McHale, Marcus</au><au>Sulpice, Ronan</au><au>Bao, Kan</au><au>Lal, Rohit</au><au>Duhan, Asha</au><au>Hallab, Asis</au><au>Denton, Alisandra K.</au><au>Bolger, Marie E.</au><au>Fernie, Alisdair R.</au><au>Hind, Sarah R.</au><au>Mueller, Lukas A.</au><au>Martin, Gregory B.</au><au>Fei, Zhangjun</au><au>Martin, Cathie</au><au>Giovannoni, James J.</au><au>Strickler, Susan R.</au><au>Usadel, Björn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2022-06</date><risdate>2022</risdate><volume>110</volume><issue>6</issue><spage>1791</spage><epage>1810</epage><pages>1791-1810</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome‐scale genome assembly for S. lycopersicoides LA2951, which contains 37 938 predicted protein‐coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of the S. lycopersicoides introgressions in a set of S. lycopersicum cv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity‐associated function of the clustered Pto gene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of the Aubergine locus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild species S. lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β‐cyclase whose function we demonstrate. Significance Statement We present a new genome resource for the wild species Solanum lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide introgression line boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β‐cyclase whose function we demonstrate.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>35411592</pmid><doi>10.1111/tpj.15770</doi><tpages>1810</tpages><orcidid>https://orcid.org/0000-0001-8640-1750</orcidid><orcidid>https://orcid.org/0000-0001-9684-1450</orcidid><orcidid>https://orcid.org/0000-0003-2067-5235</orcidid><orcidid>https://orcid.org/0000-0003-3090-0061</orcidid><orcidid>https://orcid.org/0000-0003-0921-8041</orcidid><orcidid>https://orcid.org/0000-0002-4617-3471</orcidid><orcidid>https://orcid.org/0000-0002-0972-2515</orcidid><orcidid>https://orcid.org/0000-0003-0044-6830</orcidid><orcidid>https://orcid.org/0000-0002-1132-0224</orcidid><orcidid>https://orcid.org/0000-0001-9000-335X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2022-06, Vol.110 (6), p.1791-1810
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_journals_2680523464
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects anthocyanin
Anthocyanins
Anthocyanins - genetics
Assembly
Carotenoids
Chromosomes
Chromosomes, Plant - genetics
disease resistance
drought
Environmental stress
Gene mapping
Gene sequencing
Genes
genome
Genomes
Immunity
Lycopene
Nucleotide sequence
Phenols
Plant Breeding
Quantitative trait loci
Solanum - genetics
Solanum lycopersicoides
Solanum lycopersicum - genetics
Synteny
Tomatoes
title A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Solanum%20lycopersicoides%20reference%20genome%20facilitates%20insights%20into%20tomato%20specialized%20metabolism%20and%20immunity&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Powell,%20Adrian%20F.&rft.date=2022-06&rft.volume=110&rft.issue=6&rft.spage=1791&rft.epage=1810&rft.pages=1791-1810&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.15770&rft_dat=%3Cproquest_cross%3E2680523464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680523464&rft_id=info:pmid/35411592&rfr_iscdi=true