Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
We present our development experience and recent results for the MLPerf Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms. We use the open-source hls4ml and FINN workflows, which aim to democratize AI-hardware codesign of optimized neural networks on FPGAs. We present the de...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Borras, Hendrik Giuseppe Di Guglielmo Duarte, Javier Ghielmetti, Nicolò Hawks, Ben Hauck, Scott Hsu, Shih-Chieh Kastner, Ryan Liang, Jason Meza, Andres Muhizi, Jules Nguyen, Tai Rushil Roy Tran, Nhan Umuroglu, Yaman Weng, Olivia Yokuda, Aidan Blott, Michaela |
description | We present our development experience and recent results for the MLPerf Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms. We use the open-source hls4ml and FINN workflows, which aim to democratize AI-hardware codesign of optimized neural networks on FPGAs. We present the design and implementation process for the keyword spotting, anomaly detection, and image classification benchmark tasks. The resulting hardware implementations are quantized, configurable, spatial dataflow architectures tailored for speed and efficiency and introduce new generic optimizations and common workflows developed as a part of this work. The full workflow is presented from quantization-aware training to FPGA implementation. The solutions are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms. The resulting submissions achieve latencies as low as 20 \(\mu\)s and energy consumption as low as 30 \(\mu\)J per inference. We demonstrate how emerging ML benchmarks on heterogeneous hardware platforms can catalyze collaboration and the development of new techniques and more accessible tools. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2680441418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680441418</sourcerecordid><originalsourceid>FETCH-proquest_journals_26804414183</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8i9IzdMtzi8tSk5VcAtwd9T19VFIzk9JLc5Mz1NIyy9SKMlIVfD1CUgtSlMIycyrVHBKzUvOyE0syuZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWUBj84BS8UZmFgYmJoYmhhbGxKkCAAFqNUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680441418</pqid></control><display><type>article</type><title>Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Borras, Hendrik ; Giuseppe Di Guglielmo ; Duarte, Javier ; Ghielmetti, Nicolò ; Hawks, Ben ; Hauck, Scott ; Hsu, Shih-Chieh ; Kastner, Ryan ; Liang, Jason ; Meza, Andres ; Muhizi, Jules ; Nguyen, Tai ; Rushil Roy ; Tran, Nhan ; Umuroglu, Yaman ; Weng, Olivia ; Yokuda, Aidan ; Blott, Michaela</creator><creatorcontrib>Borras, Hendrik ; Giuseppe Di Guglielmo ; Duarte, Javier ; Ghielmetti, Nicolò ; Hawks, Ben ; Hauck, Scott ; Hsu, Shih-Chieh ; Kastner, Ryan ; Liang, Jason ; Meza, Andres ; Muhizi, Jules ; Nguyen, Tai ; Rushil Roy ; Tran, Nhan ; Umuroglu, Yaman ; Weng, Olivia ; Yokuda, Aidan ; Blott, Michaela</creatorcontrib><description>We present our development experience and recent results for the MLPerf Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms. We use the open-source hls4ml and FINN workflows, which aim to democratize AI-hardware codesign of optimized neural networks on FPGAs. We present the design and implementation process for the keyword spotting, anomaly detection, and image classification benchmark tasks. The resulting hardware implementations are quantized, configurable, spatial dataflow architectures tailored for speed and efficiency and introduce new generic optimizations and common workflows developed as a part of this work. The full workflow is presented from quantization-aware training to FPGA implementation. The solutions are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms. The resulting submissions achieve latencies as low as 20 \(\mu\)s and energy consumption as low as 30 \(\mu\)J per inference. We demonstrate how emerging ML benchmarks on heterogeneous hardware platforms can catalyze collaboration and the development of new techniques and more accessible tools.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Benchmarks ; Co-design ; Energy consumption ; Field programmable gate arrays ; Hardware ; Image classification ; Inference ; Neural networks ; Platforms ; System on chip ; Workflow</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Borras, Hendrik</creatorcontrib><creatorcontrib>Giuseppe Di Guglielmo</creatorcontrib><creatorcontrib>Duarte, Javier</creatorcontrib><creatorcontrib>Ghielmetti, Nicolò</creatorcontrib><creatorcontrib>Hawks, Ben</creatorcontrib><creatorcontrib>Hauck, Scott</creatorcontrib><creatorcontrib>Hsu, Shih-Chieh</creatorcontrib><creatorcontrib>Kastner, Ryan</creatorcontrib><creatorcontrib>Liang, Jason</creatorcontrib><creatorcontrib>Meza, Andres</creatorcontrib><creatorcontrib>Muhizi, Jules</creatorcontrib><creatorcontrib>Nguyen, Tai</creatorcontrib><creatorcontrib>Rushil Roy</creatorcontrib><creatorcontrib>Tran, Nhan</creatorcontrib><creatorcontrib>Umuroglu, Yaman</creatorcontrib><creatorcontrib>Weng, Olivia</creatorcontrib><creatorcontrib>Yokuda, Aidan</creatorcontrib><creatorcontrib>Blott, Michaela</creatorcontrib><title>Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark</title><title>arXiv.org</title><description>We present our development experience and recent results for the MLPerf Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms. We use the open-source hls4ml and FINN workflows, which aim to democratize AI-hardware codesign of optimized neural networks on FPGAs. We present the design and implementation process for the keyword spotting, anomaly detection, and image classification benchmark tasks. The resulting hardware implementations are quantized, configurable, spatial dataflow architectures tailored for speed and efficiency and introduce new generic optimizations and common workflows developed as a part of this work. The full workflow is presented from quantization-aware training to FPGA implementation. The solutions are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms. The resulting submissions achieve latencies as low as 20 \(\mu\)s and energy consumption as low as 30 \(\mu\)J per inference. We demonstrate how emerging ML benchmarks on heterogeneous hardware platforms can catalyze collaboration and the development of new techniques and more accessible tools.</description><subject>Anomalies</subject><subject>Benchmarks</subject><subject>Co-design</subject><subject>Energy consumption</subject><subject>Field programmable gate arrays</subject><subject>Hardware</subject><subject>Image classification</subject><subject>Inference</subject><subject>Neural networks</subject><subject>Platforms</subject><subject>System on chip</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8i9IzdMtzi8tSk5VcAtwd9T19VFIzk9JLc5Mz1NIyy9SKMlIVfD1CUgtSlMIycyrVHBKzUvOyE0syuZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWUBj84BS8UZmFgYmJoYmhhbGxKkCAAFqNUg</recordid><startdate>20220623</startdate><enddate>20220623</enddate><creator>Borras, Hendrik</creator><creator>Giuseppe Di Guglielmo</creator><creator>Duarte, Javier</creator><creator>Ghielmetti, Nicolò</creator><creator>Hawks, Ben</creator><creator>Hauck, Scott</creator><creator>Hsu, Shih-Chieh</creator><creator>Kastner, Ryan</creator><creator>Liang, Jason</creator><creator>Meza, Andres</creator><creator>Muhizi, Jules</creator><creator>Nguyen, Tai</creator><creator>Rushil Roy</creator><creator>Tran, Nhan</creator><creator>Umuroglu, Yaman</creator><creator>Weng, Olivia</creator><creator>Yokuda, Aidan</creator><creator>Blott, Michaela</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220623</creationdate><title>Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark</title><author>Borras, Hendrik ; Giuseppe Di Guglielmo ; Duarte, Javier ; Ghielmetti, Nicolò ; Hawks, Ben ; Hauck, Scott ; Hsu, Shih-Chieh ; Kastner, Ryan ; Liang, Jason ; Meza, Andres ; Muhizi, Jules ; Nguyen, Tai ; Rushil Roy ; Tran, Nhan ; Umuroglu, Yaman ; Weng, Olivia ; Yokuda, Aidan ; Blott, Michaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26804414183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Benchmarks</topic><topic>Co-design</topic><topic>Energy consumption</topic><topic>Field programmable gate arrays</topic><topic>Hardware</topic><topic>Image classification</topic><topic>Inference</topic><topic>Neural networks</topic><topic>Platforms</topic><topic>System on chip</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Borras, Hendrik</creatorcontrib><creatorcontrib>Giuseppe Di Guglielmo</creatorcontrib><creatorcontrib>Duarte, Javier</creatorcontrib><creatorcontrib>Ghielmetti, Nicolò</creatorcontrib><creatorcontrib>Hawks, Ben</creatorcontrib><creatorcontrib>Hauck, Scott</creatorcontrib><creatorcontrib>Hsu, Shih-Chieh</creatorcontrib><creatorcontrib>Kastner, Ryan</creatorcontrib><creatorcontrib>Liang, Jason</creatorcontrib><creatorcontrib>Meza, Andres</creatorcontrib><creatorcontrib>Muhizi, Jules</creatorcontrib><creatorcontrib>Nguyen, Tai</creatorcontrib><creatorcontrib>Rushil Roy</creatorcontrib><creatorcontrib>Tran, Nhan</creatorcontrib><creatorcontrib>Umuroglu, Yaman</creatorcontrib><creatorcontrib>Weng, Olivia</creatorcontrib><creatorcontrib>Yokuda, Aidan</creatorcontrib><creatorcontrib>Blott, Michaela</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borras, Hendrik</au><au>Giuseppe Di Guglielmo</au><au>Duarte, Javier</au><au>Ghielmetti, Nicolò</au><au>Hawks, Ben</au><au>Hauck, Scott</au><au>Hsu, Shih-Chieh</au><au>Kastner, Ryan</au><au>Liang, Jason</au><au>Meza, Andres</au><au>Muhizi, Jules</au><au>Nguyen, Tai</au><au>Rushil Roy</au><au>Tran, Nhan</au><au>Umuroglu, Yaman</au><au>Weng, Olivia</au><au>Yokuda, Aidan</au><au>Blott, Michaela</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark</atitle><jtitle>arXiv.org</jtitle><date>2022-06-23</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We present our development experience and recent results for the MLPerf Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms. We use the open-source hls4ml and FINN workflows, which aim to democratize AI-hardware codesign of optimized neural networks on FPGAs. We present the design and implementation process for the keyword spotting, anomaly detection, and image classification benchmark tasks. The resulting hardware implementations are quantized, configurable, spatial dataflow architectures tailored for speed and efficiency and introduce new generic optimizations and common workflows developed as a part of this work. The full workflow is presented from quantization-aware training to FPGA implementation. The solutions are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms. The resulting submissions achieve latencies as low as 20 \(\mu\)s and energy consumption as low as 30 \(\mu\)J per inference. We demonstrate how emerging ML benchmarks on heterogeneous hardware platforms can catalyze collaboration and the development of new techniques and more accessible tools.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2680441418 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Anomalies Benchmarks Co-design Energy consumption Field programmable gate arrays Hardware Image classification Inference Neural networks Platforms System on chip Workflow |
title | Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T09%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Open-source%20FPGA-ML%20codesign%20for%20the%20MLPerf%20Tiny%20Benchmark&rft.jtitle=arXiv.org&rft.au=Borras,%20Hendrik&rft.date=2022-06-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2680441418%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680441418&rft_id=info:pmid/&rfr_iscdi=true |