Strained Zero‐Valent Iron for Highly Efficient Heavy Metal Removal

Microscale zero‐valent iron is one of the most important multifunctional environmental remediation materials, yet its passivated iron oxide shell hampers the transportation of inherent electrons. Herein, the authors exert tensile strain onto mZVI by interstitial boron doping that destabilizes lattic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-06, Vol.32 (26), p.n/a
Hauptverfasser: Wei, Kai, Li, Hao, Gu, Huayu, Liu, Xiufan, Ling, Cancan, Cao, Shiyu, Li, Meiqi, Liao, Minzi, Peng, Xing, Shi, Yanbiao, Shen, Wenjuan, Liang, Chuan, Ai, Zhihui, Zhang, Lizhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page
container_title Advanced functional materials
container_volume 32
creator Wei, Kai
Li, Hao
Gu, Huayu
Liu, Xiufan
Ling, Cancan
Cao, Shiyu
Li, Meiqi
Liao, Minzi
Peng, Xing
Shi, Yanbiao
Shen, Wenjuan
Liang, Chuan
Ai, Zhihui
Zhang, Lizhi
description Microscale zero‐valent iron is one of the most important multifunctional environmental remediation materials, yet its passivated iron oxide shell hampers the transportation of inherent electrons. Herein, the authors exert tensile strain onto mZVI by interstitial boron doping that destabilizes lattice FeFe interactions, thereby liberating the electrons trapped in the iron reservoir. Tensile strain also upshifts the equilibrated Fermi level at the iron/iron oxide Ohmic heterojunction, thus populating the oxide shell with abundant electrons for robust heavy metal sequestration. Strained‐mZVI exhibits a 62 times faster Cr(VI) removal rate than its unstrained counterpart and can successfully treat industrial wastewater such as landfill leachate, electroplating, and chromium effluents. The excellent property and exceedingly low cost ($2000 ton−1) of strained‐mZVI results in its great potential to remediate heavy metal‐contaminated water and soil. Strain effect endows an outstanding balance between reactivity and costs in zero‐valent iron for efficient heavy metal control.
doi_str_mv 10.1002/adfm.202200498
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680429448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680429448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2478-21c332e568458f9bcb7bf81e293e8989ba15ec95bcb6e77ccbcccff3806ef08b3</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsFa3rgdcp84tycyy9GILLYI3xM0wmZ7RlDRTJ2klOx_BZ_RJTKnUpatz4P--c-BH6JKSHiWEXZuFW_UYYYwQoeQR6tCEJhEnTB4fdvp8is6qakkITVMuOmh4XweTl7DALxD89-fXkymgrPE0-BI7H_Akf30rGjxyLrf5LpmA2TZ4DrUp8B2s_NYU5-jEmaKCi9_ZRY_j0cNgEs1ub6aD_iyyTKQyYtRyziBOpIilU5nN0sxJCkxxkEqqzNAYrIrbIIE0tTaz1jrHJUnAEZnxLrra310H_76BqtZLvwll-1KzRBLBlBCypXp7ygZfVQGcXod8ZUKjKdG7pvSuKX1oqhXUXvjIC2j-oXV_OJ7_uT9MbW25</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680429448</pqid></control><display><type>article</type><title>Strained Zero‐Valent Iron for Highly Efficient Heavy Metal Removal</title><source>Access via Wiley Online Library</source><creator>Wei, Kai ; Li, Hao ; Gu, Huayu ; Liu, Xiufan ; Ling, Cancan ; Cao, Shiyu ; Li, Meiqi ; Liao, Minzi ; Peng, Xing ; Shi, Yanbiao ; Shen, Wenjuan ; Liang, Chuan ; Ai, Zhihui ; Zhang, Lizhi</creator><creatorcontrib>Wei, Kai ; Li, Hao ; Gu, Huayu ; Liu, Xiufan ; Ling, Cancan ; Cao, Shiyu ; Li, Meiqi ; Liao, Minzi ; Peng, Xing ; Shi, Yanbiao ; Shen, Wenjuan ; Liang, Chuan ; Ai, Zhihui ; Zhang, Lizhi</creatorcontrib><description>Microscale zero‐valent iron is one of the most important multifunctional environmental remediation materials, yet its passivated iron oxide shell hampers the transportation of inherent electrons. Herein, the authors exert tensile strain onto mZVI by interstitial boron doping that destabilizes lattice FeFe interactions, thereby liberating the electrons trapped in the iron reservoir. Tensile strain also upshifts the equilibrated Fermi level at the iron/iron oxide Ohmic heterojunction, thus populating the oxide shell with abundant electrons for robust heavy metal sequestration. Strained‐mZVI exhibits a 62 times faster Cr(VI) removal rate than its unstrained counterpart and can successfully treat industrial wastewater such as landfill leachate, electroplating, and chromium effluents. The excellent property and exceedingly low cost ($2000 ton−1) of strained‐mZVI results in its great potential to remediate heavy metal‐contaminated water and soil. Strain effect endows an outstanding balance between reactivity and costs in zero‐valent iron for efficient heavy metal control.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202200498</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chromium ; Electrons ; Electroplating ; heavy metal removal ; Heavy metals ; Heterojunctions ; Industrial wastes ; interstitial B ; Iron oxides ; lattice strain ; Materials science ; microscale zero‐valent iron ; Soil contamination ; Soil remediation ; Soil water ; Tensile strain ; ton‐scale manufacture ; Wastewater treatment</subject><ispartof>Advanced functional materials, 2022-06, Vol.32 (26), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2478-21c332e568458f9bcb7bf81e293e8989ba15ec95bcb6e77ccbcccff3806ef08b3</citedby><cites>FETCH-LOGICAL-c2478-21c332e568458f9bcb7bf81e293e8989ba15ec95bcb6e77ccbcccff3806ef08b3</cites><orcidid>0000-0002-6842-9167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202200498$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202200498$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wei, Kai</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Gu, Huayu</creatorcontrib><creatorcontrib>Liu, Xiufan</creatorcontrib><creatorcontrib>Ling, Cancan</creatorcontrib><creatorcontrib>Cao, Shiyu</creatorcontrib><creatorcontrib>Li, Meiqi</creatorcontrib><creatorcontrib>Liao, Minzi</creatorcontrib><creatorcontrib>Peng, Xing</creatorcontrib><creatorcontrib>Shi, Yanbiao</creatorcontrib><creatorcontrib>Shen, Wenjuan</creatorcontrib><creatorcontrib>Liang, Chuan</creatorcontrib><creatorcontrib>Ai, Zhihui</creatorcontrib><creatorcontrib>Zhang, Lizhi</creatorcontrib><title>Strained Zero‐Valent Iron for Highly Efficient Heavy Metal Removal</title><title>Advanced functional materials</title><description>Microscale zero‐valent iron is one of the most important multifunctional environmental remediation materials, yet its passivated iron oxide shell hampers the transportation of inherent electrons. Herein, the authors exert tensile strain onto mZVI by interstitial boron doping that destabilizes lattice FeFe interactions, thereby liberating the electrons trapped in the iron reservoir. Tensile strain also upshifts the equilibrated Fermi level at the iron/iron oxide Ohmic heterojunction, thus populating the oxide shell with abundant electrons for robust heavy metal sequestration. Strained‐mZVI exhibits a 62 times faster Cr(VI) removal rate than its unstrained counterpart and can successfully treat industrial wastewater such as landfill leachate, electroplating, and chromium effluents. The excellent property and exceedingly low cost ($2000 ton−1) of strained‐mZVI results in its great potential to remediate heavy metal‐contaminated water and soil. Strain effect endows an outstanding balance between reactivity and costs in zero‐valent iron for efficient heavy metal control.</description><subject>Chromium</subject><subject>Electrons</subject><subject>Electroplating</subject><subject>heavy metal removal</subject><subject>Heavy metals</subject><subject>Heterojunctions</subject><subject>Industrial wastes</subject><subject>interstitial B</subject><subject>Iron oxides</subject><subject>lattice strain</subject><subject>Materials science</subject><subject>microscale zero‐valent iron</subject><subject>Soil contamination</subject><subject>Soil remediation</subject><subject>Soil water</subject><subject>Tensile strain</subject><subject>ton‐scale manufacture</subject><subject>Wastewater treatment</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRsFa3rgdcp84tycyy9GILLYI3xM0wmZ7RlDRTJ2klOx_BZ_RJTKnUpatz4P--c-BH6JKSHiWEXZuFW_UYYYwQoeQR6tCEJhEnTB4fdvp8is6qakkITVMuOmh4XweTl7DALxD89-fXkymgrPE0-BI7H_Akf30rGjxyLrf5LpmA2TZ4DrUp8B2s_NYU5-jEmaKCi9_ZRY_j0cNgEs1ub6aD_iyyTKQyYtRyziBOpIilU5nN0sxJCkxxkEqqzNAYrIrbIIE0tTaz1jrHJUnAEZnxLrra310H_76BqtZLvwll-1KzRBLBlBCypXp7ygZfVQGcXod8ZUKjKdG7pvSuKX1oqhXUXvjIC2j-oXV_OJ7_uT9MbW25</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Wei, Kai</creator><creator>Li, Hao</creator><creator>Gu, Huayu</creator><creator>Liu, Xiufan</creator><creator>Ling, Cancan</creator><creator>Cao, Shiyu</creator><creator>Li, Meiqi</creator><creator>Liao, Minzi</creator><creator>Peng, Xing</creator><creator>Shi, Yanbiao</creator><creator>Shen, Wenjuan</creator><creator>Liang, Chuan</creator><creator>Ai, Zhihui</creator><creator>Zhang, Lizhi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6842-9167</orcidid></search><sort><creationdate>20220601</creationdate><title>Strained Zero‐Valent Iron for Highly Efficient Heavy Metal Removal</title><author>Wei, Kai ; Li, Hao ; Gu, Huayu ; Liu, Xiufan ; Ling, Cancan ; Cao, Shiyu ; Li, Meiqi ; Liao, Minzi ; Peng, Xing ; Shi, Yanbiao ; Shen, Wenjuan ; Liang, Chuan ; Ai, Zhihui ; Zhang, Lizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2478-21c332e568458f9bcb7bf81e293e8989ba15ec95bcb6e77ccbcccff3806ef08b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chromium</topic><topic>Electrons</topic><topic>Electroplating</topic><topic>heavy metal removal</topic><topic>Heavy metals</topic><topic>Heterojunctions</topic><topic>Industrial wastes</topic><topic>interstitial B</topic><topic>Iron oxides</topic><topic>lattice strain</topic><topic>Materials science</topic><topic>microscale zero‐valent iron</topic><topic>Soil contamination</topic><topic>Soil remediation</topic><topic>Soil water</topic><topic>Tensile strain</topic><topic>ton‐scale manufacture</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Kai</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Gu, Huayu</creatorcontrib><creatorcontrib>Liu, Xiufan</creatorcontrib><creatorcontrib>Ling, Cancan</creatorcontrib><creatorcontrib>Cao, Shiyu</creatorcontrib><creatorcontrib>Li, Meiqi</creatorcontrib><creatorcontrib>Liao, Minzi</creatorcontrib><creatorcontrib>Peng, Xing</creatorcontrib><creatorcontrib>Shi, Yanbiao</creatorcontrib><creatorcontrib>Shen, Wenjuan</creatorcontrib><creatorcontrib>Liang, Chuan</creatorcontrib><creatorcontrib>Ai, Zhihui</creatorcontrib><creatorcontrib>Zhang, Lizhi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Kai</au><au>Li, Hao</au><au>Gu, Huayu</au><au>Liu, Xiufan</au><au>Ling, Cancan</au><au>Cao, Shiyu</au><au>Li, Meiqi</au><au>Liao, Minzi</au><au>Peng, Xing</au><au>Shi, Yanbiao</au><au>Shen, Wenjuan</au><au>Liang, Chuan</au><au>Ai, Zhihui</au><au>Zhang, Lizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strained Zero‐Valent Iron for Highly Efficient Heavy Metal Removal</atitle><jtitle>Advanced functional materials</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>26</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Microscale zero‐valent iron is one of the most important multifunctional environmental remediation materials, yet its passivated iron oxide shell hampers the transportation of inherent electrons. Herein, the authors exert tensile strain onto mZVI by interstitial boron doping that destabilizes lattice FeFe interactions, thereby liberating the electrons trapped in the iron reservoir. Tensile strain also upshifts the equilibrated Fermi level at the iron/iron oxide Ohmic heterojunction, thus populating the oxide shell with abundant electrons for robust heavy metal sequestration. Strained‐mZVI exhibits a 62 times faster Cr(VI) removal rate than its unstrained counterpart and can successfully treat industrial wastewater such as landfill leachate, electroplating, and chromium effluents. The excellent property and exceedingly low cost ($2000 ton−1) of strained‐mZVI results in its great potential to remediate heavy metal‐contaminated water and soil. Strain effect endows an outstanding balance between reactivity and costs in zero‐valent iron for efficient heavy metal control.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202200498</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6842-9167</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-06, Vol.32 (26), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2680429448
source Access via Wiley Online Library
subjects Chromium
Electrons
Electroplating
heavy metal removal
Heavy metals
Heterojunctions
Industrial wastes
interstitial B
Iron oxides
lattice strain
Materials science
microscale zero‐valent iron
Soil contamination
Soil remediation
Soil water
Tensile strain
ton‐scale manufacture
Wastewater treatment
title Strained Zero‐Valent Iron for Highly Efficient Heavy Metal Removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strained%20Zero%E2%80%90Valent%20Iron%20for%20Highly%20Efficient%20Heavy%20Metal%20Removal&rft.jtitle=Advanced%20functional%20materials&rft.au=Wei,%20Kai&rft.date=2022-06-01&rft.volume=32&rft.issue=26&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202200498&rft_dat=%3Cproquest_cross%3E2680429448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680429448&rft_id=info:pmid/&rfr_iscdi=true