Strained Zero‐Valent Iron for Highly Efficient Heavy Metal Removal
Microscale zero‐valent iron is one of the most important multifunctional environmental remediation materials, yet its passivated iron oxide shell hampers the transportation of inherent electrons. Herein, the authors exert tensile strain onto mZVI by interstitial boron doping that destabilizes lattic...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-06, Vol.32 (26), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 26 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Wei, Kai Li, Hao Gu, Huayu Liu, Xiufan Ling, Cancan Cao, Shiyu Li, Meiqi Liao, Minzi Peng, Xing Shi, Yanbiao Shen, Wenjuan Liang, Chuan Ai, Zhihui Zhang, Lizhi |
description | Microscale zero‐valent iron is one of the most important multifunctional environmental remediation materials, yet its passivated iron oxide shell hampers the transportation of inherent electrons. Herein, the authors exert tensile strain onto mZVI by interstitial boron doping that destabilizes lattice FeFe interactions, thereby liberating the electrons trapped in the iron reservoir. Tensile strain also upshifts the equilibrated Fermi level at the iron/iron oxide Ohmic heterojunction, thus populating the oxide shell with abundant electrons for robust heavy metal sequestration. Strained‐mZVI exhibits a 62 times faster Cr(VI) removal rate than its unstrained counterpart and can successfully treat industrial wastewater such as landfill leachate, electroplating, and chromium effluents. The excellent property and exceedingly low cost ($2000 ton−1) of strained‐mZVI results in its great potential to remediate heavy metal‐contaminated water and soil.
Strain effect endows an outstanding balance between reactivity and costs in zero‐valent iron for efficient heavy metal control. |
doi_str_mv | 10.1002/adfm.202200498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680429448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680429448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2478-21c332e568458f9bcb7bf81e293e8989ba15ec95bcb6e77ccbcccff3806ef08b3</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsFa3rgdcp84tycyy9GILLYI3xM0wmZ7RlDRTJ2klOx_BZ_RJTKnUpatz4P--c-BH6JKSHiWEXZuFW_UYYYwQoeQR6tCEJhEnTB4fdvp8is6qakkITVMuOmh4XweTl7DALxD89-fXkymgrPE0-BI7H_Akf30rGjxyLrf5LpmA2TZ4DrUp8B2s_NYU5-jEmaKCi9_ZRY_j0cNgEs1ub6aD_iyyTKQyYtRyziBOpIilU5nN0sxJCkxxkEqqzNAYrIrbIIE0tTaz1jrHJUnAEZnxLrra310H_76BqtZLvwll-1KzRBLBlBCypXp7ygZfVQGcXod8ZUKjKdG7pvSuKX1oqhXUXvjIC2j-oXV_OJ7_uT9MbW25</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680429448</pqid></control><display><type>article</type><title>Strained Zero‐Valent Iron for Highly Efficient Heavy Metal Removal</title><source>Access via Wiley Online Library</source><creator>Wei, Kai ; Li, Hao ; Gu, Huayu ; Liu, Xiufan ; Ling, Cancan ; Cao, Shiyu ; Li, Meiqi ; Liao, Minzi ; Peng, Xing ; Shi, Yanbiao ; Shen, Wenjuan ; Liang, Chuan ; Ai, Zhihui ; Zhang, Lizhi</creator><creatorcontrib>Wei, Kai ; Li, Hao ; Gu, Huayu ; Liu, Xiufan ; Ling, Cancan ; Cao, Shiyu ; Li, Meiqi ; Liao, Minzi ; Peng, Xing ; Shi, Yanbiao ; Shen, Wenjuan ; Liang, Chuan ; Ai, Zhihui ; Zhang, Lizhi</creatorcontrib><description>Microscale zero‐valent iron is one of the most important multifunctional environmental remediation materials, yet its passivated iron oxide shell hampers the transportation of inherent electrons. Herein, the authors exert tensile strain onto mZVI by interstitial boron doping that destabilizes lattice FeFe interactions, thereby liberating the electrons trapped in the iron reservoir. Tensile strain also upshifts the equilibrated Fermi level at the iron/iron oxide Ohmic heterojunction, thus populating the oxide shell with abundant electrons for robust heavy metal sequestration. Strained‐mZVI exhibits a 62 times faster Cr(VI) removal rate than its unstrained counterpart and can successfully treat industrial wastewater such as landfill leachate, electroplating, and chromium effluents. The excellent property and exceedingly low cost ($2000 ton−1) of strained‐mZVI results in its great potential to remediate heavy metal‐contaminated water and soil.
Strain effect endows an outstanding balance between reactivity and costs in zero‐valent iron for efficient heavy metal control.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202200498</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chromium ; Electrons ; Electroplating ; heavy metal removal ; Heavy metals ; Heterojunctions ; Industrial wastes ; interstitial B ; Iron oxides ; lattice strain ; Materials science ; microscale zero‐valent iron ; Soil contamination ; Soil remediation ; Soil water ; Tensile strain ; ton‐scale manufacture ; Wastewater treatment</subject><ispartof>Advanced functional materials, 2022-06, Vol.32 (26), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2478-21c332e568458f9bcb7bf81e293e8989ba15ec95bcb6e77ccbcccff3806ef08b3</citedby><cites>FETCH-LOGICAL-c2478-21c332e568458f9bcb7bf81e293e8989ba15ec95bcb6e77ccbcccff3806ef08b3</cites><orcidid>0000-0002-6842-9167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202200498$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202200498$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wei, Kai</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Gu, Huayu</creatorcontrib><creatorcontrib>Liu, Xiufan</creatorcontrib><creatorcontrib>Ling, Cancan</creatorcontrib><creatorcontrib>Cao, Shiyu</creatorcontrib><creatorcontrib>Li, Meiqi</creatorcontrib><creatorcontrib>Liao, Minzi</creatorcontrib><creatorcontrib>Peng, Xing</creatorcontrib><creatorcontrib>Shi, Yanbiao</creatorcontrib><creatorcontrib>Shen, Wenjuan</creatorcontrib><creatorcontrib>Liang, Chuan</creatorcontrib><creatorcontrib>Ai, Zhihui</creatorcontrib><creatorcontrib>Zhang, Lizhi</creatorcontrib><title>Strained Zero‐Valent Iron for Highly Efficient Heavy Metal Removal</title><title>Advanced functional materials</title><description>Microscale zero‐valent iron is one of the most important multifunctional environmental remediation materials, yet its passivated iron oxide shell hampers the transportation of inherent electrons. Herein, the authors exert tensile strain onto mZVI by interstitial boron doping that destabilizes lattice FeFe interactions, thereby liberating the electrons trapped in the iron reservoir. Tensile strain also upshifts the equilibrated Fermi level at the iron/iron oxide Ohmic heterojunction, thus populating the oxide shell with abundant electrons for robust heavy metal sequestration. Strained‐mZVI exhibits a 62 times faster Cr(VI) removal rate than its unstrained counterpart and can successfully treat industrial wastewater such as landfill leachate, electroplating, and chromium effluents. The excellent property and exceedingly low cost ($2000 ton−1) of strained‐mZVI results in its great potential to remediate heavy metal‐contaminated water and soil.
Strain effect endows an outstanding balance between reactivity and costs in zero‐valent iron for efficient heavy metal control.</description><subject>Chromium</subject><subject>Electrons</subject><subject>Electroplating</subject><subject>heavy metal removal</subject><subject>Heavy metals</subject><subject>Heterojunctions</subject><subject>Industrial wastes</subject><subject>interstitial B</subject><subject>Iron oxides</subject><subject>lattice strain</subject><subject>Materials science</subject><subject>microscale zero‐valent iron</subject><subject>Soil contamination</subject><subject>Soil remediation</subject><subject>Soil water</subject><subject>Tensile strain</subject><subject>ton‐scale manufacture</subject><subject>Wastewater treatment</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRsFa3rgdcp84tycyy9GILLYI3xM0wmZ7RlDRTJ2klOx_BZ_RJTKnUpatz4P--c-BH6JKSHiWEXZuFW_UYYYwQoeQR6tCEJhEnTB4fdvp8is6qakkITVMuOmh4XweTl7DALxD89-fXkymgrPE0-BI7H_Akf30rGjxyLrf5LpmA2TZ4DrUp8B2s_NYU5-jEmaKCi9_ZRY_j0cNgEs1ub6aD_iyyTKQyYtRyziBOpIilU5nN0sxJCkxxkEqqzNAYrIrbIIE0tTaz1jrHJUnAEZnxLrra310H_76BqtZLvwll-1KzRBLBlBCypXp7ygZfVQGcXod8ZUKjKdG7pvSuKX1oqhXUXvjIC2j-oXV_OJ7_uT9MbW25</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Wei, Kai</creator><creator>Li, Hao</creator><creator>Gu, Huayu</creator><creator>Liu, Xiufan</creator><creator>Ling, Cancan</creator><creator>Cao, Shiyu</creator><creator>Li, Meiqi</creator><creator>Liao, Minzi</creator><creator>Peng, Xing</creator><creator>Shi, Yanbiao</creator><creator>Shen, Wenjuan</creator><creator>Liang, Chuan</creator><creator>Ai, Zhihui</creator><creator>Zhang, Lizhi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6842-9167</orcidid></search><sort><creationdate>20220601</creationdate><title>Strained Zero‐Valent Iron for Highly Efficient Heavy Metal Removal</title><author>Wei, Kai ; Li, Hao ; Gu, Huayu ; Liu, Xiufan ; Ling, Cancan ; Cao, Shiyu ; Li, Meiqi ; Liao, Minzi ; Peng, Xing ; Shi, Yanbiao ; Shen, Wenjuan ; Liang, Chuan ; Ai, Zhihui ; Zhang, Lizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2478-21c332e568458f9bcb7bf81e293e8989ba15ec95bcb6e77ccbcccff3806ef08b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chromium</topic><topic>Electrons</topic><topic>Electroplating</topic><topic>heavy metal removal</topic><topic>Heavy metals</topic><topic>Heterojunctions</topic><topic>Industrial wastes</topic><topic>interstitial B</topic><topic>Iron oxides</topic><topic>lattice strain</topic><topic>Materials science</topic><topic>microscale zero‐valent iron</topic><topic>Soil contamination</topic><topic>Soil remediation</topic><topic>Soil water</topic><topic>Tensile strain</topic><topic>ton‐scale manufacture</topic><topic>Wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Kai</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Gu, Huayu</creatorcontrib><creatorcontrib>Liu, Xiufan</creatorcontrib><creatorcontrib>Ling, Cancan</creatorcontrib><creatorcontrib>Cao, Shiyu</creatorcontrib><creatorcontrib>Li, Meiqi</creatorcontrib><creatorcontrib>Liao, Minzi</creatorcontrib><creatorcontrib>Peng, Xing</creatorcontrib><creatorcontrib>Shi, Yanbiao</creatorcontrib><creatorcontrib>Shen, Wenjuan</creatorcontrib><creatorcontrib>Liang, Chuan</creatorcontrib><creatorcontrib>Ai, Zhihui</creatorcontrib><creatorcontrib>Zhang, Lizhi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Kai</au><au>Li, Hao</au><au>Gu, Huayu</au><au>Liu, Xiufan</au><au>Ling, Cancan</au><au>Cao, Shiyu</au><au>Li, Meiqi</au><au>Liao, Minzi</au><au>Peng, Xing</au><au>Shi, Yanbiao</au><au>Shen, Wenjuan</au><au>Liang, Chuan</au><au>Ai, Zhihui</au><au>Zhang, Lizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strained Zero‐Valent Iron for Highly Efficient Heavy Metal Removal</atitle><jtitle>Advanced functional materials</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>26</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Microscale zero‐valent iron is one of the most important multifunctional environmental remediation materials, yet its passivated iron oxide shell hampers the transportation of inherent electrons. Herein, the authors exert tensile strain onto mZVI by interstitial boron doping that destabilizes lattice FeFe interactions, thereby liberating the electrons trapped in the iron reservoir. Tensile strain also upshifts the equilibrated Fermi level at the iron/iron oxide Ohmic heterojunction, thus populating the oxide shell with abundant electrons for robust heavy metal sequestration. Strained‐mZVI exhibits a 62 times faster Cr(VI) removal rate than its unstrained counterpart and can successfully treat industrial wastewater such as landfill leachate, electroplating, and chromium effluents. The excellent property and exceedingly low cost ($2000 ton−1) of strained‐mZVI results in its great potential to remediate heavy metal‐contaminated water and soil.
Strain effect endows an outstanding balance between reactivity and costs in zero‐valent iron for efficient heavy metal control.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202200498</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6842-9167</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-06, Vol.32 (26), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2680429448 |
source | Access via Wiley Online Library |
subjects | Chromium Electrons Electroplating heavy metal removal Heavy metals Heterojunctions Industrial wastes interstitial B Iron oxides lattice strain Materials science microscale zero‐valent iron Soil contamination Soil remediation Soil water Tensile strain ton‐scale manufacture Wastewater treatment |
title | Strained Zero‐Valent Iron for Highly Efficient Heavy Metal Removal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strained%20Zero%E2%80%90Valent%20Iron%20for%20Highly%20Efficient%20Heavy%20Metal%20Removal&rft.jtitle=Advanced%20functional%20materials&rft.au=Wei,%20Kai&rft.date=2022-06-01&rft.volume=32&rft.issue=26&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202200498&rft_dat=%3Cproquest_cross%3E2680429448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680429448&rft_id=info:pmid/&rfr_iscdi=true |