Some Properties of Generalized Srivastava’s Triple Hypergeometric Function HC,p,q(·)
In this paper, we obtain a ( p , q ) - generalization of Srivastava’s triple hypergeometric function H C ( · ) , along with its integral representations by using extended Beta function B p , q ( x , y ) introduced in 2014 by Choi et al. Also, we discuss some of its main fundamental properties such a...
Gespeichert in:
Veröffentlicht in: | International journal of applied and computational mathematics 2022, Vol.8 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | International journal of applied and computational mathematics |
container_volume | 8 |
creator | Dar, S. A. Kamarujjama, M. Daud, M. |
description | In this paper, we obtain a
(
p
,
q
)
-
generalization of Srivastava’s triple hypergeometric function
H
C
(
·
)
, along with its integral representations by using extended Beta function
B
p
,
q
(
x
,
y
)
introduced in 2014 by Choi et al. Also, we discuss some of its main fundamental properties such as the Mellin transform, derivative formula, recursive identity, and a bounded inequality. In addition, we obtain an integral form of
H
C
,
p
,
q
(
·
)
function involving Laguerre polynomials. |
doi_str_mv | 10.1007/s40819-022-01360-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2680277126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680277126</sourcerecordid><originalsourceid>FETCH-LOGICAL-p72y-b97171f848b6ff6c67a3ee21613dd8119e1d5c85f882bbe3731f9f46dd21d07d3</originalsourceid><addsrcrecordid>eNpFkMFKw0AURQdRsNT-gKsBNwqNvjeTzkyWUmwrCAotuAxJ501JqUk6kxbiyt_wS9z7KX6J0Qqu7l2c9y4cxs4RrhFA34QYDCYRCBEBSgVRe8R6ApMkGulEHXddxl1HkKdsEMIaAATGGoTpsed59UL8yVc1-aagwCvHp1SSzzbFK1k-98U-C022z77e3gNf-KLeEJ-1Hb6i7rTxxZJPduWyKaqSz8bDeri9_Py4OmMnLtsEGvxlny0md4vxLHp4nN6Pbx-iWos2yhONGp2JTa6cU0ulM0kkUKG01iAmhHa0NCNnjMhzklqiS1ysrBVoQVvZZxeHt7WvtjsKTbqudr7sFlOhDAitUaiOkgcq1L4oV-T_KYT0x2F6cJh2DtNfh2krvwFO_GY2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680277126</pqid></control><display><type>article</type><title>Some Properties of Generalized Srivastava’s Triple Hypergeometric Function HC,p,q(·)</title><source>SpringerLink Journals</source><creator>Dar, S. A. ; Kamarujjama, M. ; Daud, M.</creator><creatorcontrib>Dar, S. A. ; Kamarujjama, M. ; Daud, M.</creatorcontrib><description>In this paper, we obtain a
(
p
,
q
)
-
generalization of Srivastava’s triple hypergeometric function
H
C
(
·
)
, along with its integral representations by using extended Beta function
B
p
,
q
(
x
,
y
)
introduced in 2014 by Choi et al. Also, we discuss some of its main fundamental properties such as the Mellin transform, derivative formula, recursive identity, and a bounded inequality. In addition, we obtain an integral form of
H
C
,
p
,
q
(
·
)
function involving Laguerre polynomials.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-022-01360-y</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Computational mathematics ; Computational Science and Engineering ; Hypergeometric functions ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Mellin transforms ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Polynomials ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2022, Vol.8 (4)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p72y-b97171f848b6ff6c67a3ee21613dd8119e1d5c85f882bbe3731f9f46dd21d07d3</cites><orcidid>0000-0002-5864-7793 ; 0000-0003-2015-4587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-022-01360-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-022-01360-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dar, S. A.</creatorcontrib><creatorcontrib>Kamarujjama, M.</creatorcontrib><creatorcontrib>Daud, M.</creatorcontrib><title>Some Properties of Generalized Srivastava’s Triple Hypergeometric Function HC,p,q(·)</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>In this paper, we obtain a
(
p
,
q
)
-
generalization of Srivastava’s triple hypergeometric function
H
C
(
·
)
, along with its integral representations by using extended Beta function
B
p
,
q
(
x
,
y
)
introduced in 2014 by Choi et al. Also, we discuss some of its main fundamental properties such as the Mellin transform, derivative formula, recursive identity, and a bounded inequality. In addition, we obtain an integral form of
H
C
,
p
,
q
(
·
)
function involving Laguerre polynomials.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Hypergeometric functions</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mellin transforms</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMFKw0AURQdRsNT-gKsBNwqNvjeTzkyWUmwrCAotuAxJ501JqUk6kxbiyt_wS9z7KX6J0Qqu7l2c9y4cxs4RrhFA34QYDCYRCBEBSgVRe8R6ApMkGulEHXddxl1HkKdsEMIaAATGGoTpsed59UL8yVc1-aagwCvHp1SSzzbFK1k-98U-C022z77e3gNf-KLeEJ-1Hb6i7rTxxZJPduWyKaqSz8bDeri9_Py4OmMnLtsEGvxlny0md4vxLHp4nN6Pbx-iWos2yhONGp2JTa6cU0ulM0kkUKG01iAmhHa0NCNnjMhzklqiS1ysrBVoQVvZZxeHt7WvtjsKTbqudr7sFlOhDAitUaiOkgcq1L4oV-T_KYT0x2F6cJh2DtNfh2krvwFO_GY2</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dar, S. A.</creator><creator>Kamarujjama, M.</creator><creator>Daud, M.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-5864-7793</orcidid><orcidid>https://orcid.org/0000-0003-2015-4587</orcidid></search><sort><creationdate>2022</creationdate><title>Some Properties of Generalized Srivastava’s Triple Hypergeometric Function HC,p,q(·)</title><author>Dar, S. A. ; Kamarujjama, M. ; Daud, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p72y-b97171f848b6ff6c67a3ee21613dd8119e1d5c85f882bbe3731f9f46dd21d07d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Hypergeometric functions</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mellin transforms</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dar, S. A.</creatorcontrib><creatorcontrib>Kamarujjama, M.</creatorcontrib><creatorcontrib>Daud, M.</creatorcontrib><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dar, S. A.</au><au>Kamarujjama, M.</au><au>Daud, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Properties of Generalized Srivastava’s Triple Hypergeometric Function HC,p,q(·)</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2022</date><risdate>2022</risdate><volume>8</volume><issue>4</issue><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>In this paper, we obtain a
(
p
,
q
)
-
generalization of Srivastava’s triple hypergeometric function
H
C
(
·
)
, along with its integral representations by using extended Beta function
B
p
,
q
(
x
,
y
)
introduced in 2014 by Choi et al. Also, we discuss some of its main fundamental properties such as the Mellin transform, derivative formula, recursive identity, and a bounded inequality. In addition, we obtain an integral form of
H
C
,
p
,
q
(
·
)
function involving Laguerre polynomials.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-022-01360-y</doi><orcidid>https://orcid.org/0000-0002-5864-7793</orcidid><orcidid>https://orcid.org/0000-0003-2015-4587</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2349-5103 |
ispartof | International journal of applied and computational mathematics, 2022, Vol.8 (4) |
issn | 2349-5103 2199-5796 |
language | eng |
recordid | cdi_proquest_journals_2680277126 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Applied mathematics Computational mathematics Computational Science and Engineering Hypergeometric functions Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Mellin transforms Nuclear Energy Operations Research/Decision Theory Original Paper Polynomials Theoretical |
title | Some Properties of Generalized Srivastava’s Triple Hypergeometric Function HC,p,q(·) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Properties%20of%20Generalized%20Srivastava%E2%80%99s%20Triple%20Hypergeometric%20Function%20HC,p,q(%C2%B7)&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Dar,%20S.%20A.&rft.date=2022&rft.volume=8&rft.issue=4&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-022-01360-y&rft_dat=%3Cproquest_sprin%3E2680277126%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680277126&rft_id=info:pmid/&rfr_iscdi=true |