Some Properties of Generalized Srivastava’s Triple Hypergeometric Function HC,p,q(·)

In this paper, we obtain a ( p , q ) - generalization of Srivastava’s triple hypergeometric function H C ( · ) , along with its integral representations by using extended Beta function B p , q ( x , y ) introduced in 2014 by Choi et al. Also, we discuss some of its main fundamental properties such a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and computational mathematics 2022, Vol.8 (4)
Hauptverfasser: Dar, S. A., Kamarujjama, M., Daud, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title International journal of applied and computational mathematics
container_volume 8
creator Dar, S. A.
Kamarujjama, M.
Daud, M.
description In this paper, we obtain a ( p , q ) - generalization of Srivastava’s triple hypergeometric function H C ( · ) , along with its integral representations by using extended Beta function B p , q ( x , y ) introduced in 2014 by Choi et al. Also, we discuss some of its main fundamental properties such as the Mellin transform, derivative formula, recursive identity, and a bounded inequality. In addition, we obtain an integral form of H C , p , q ( · ) function involving Laguerre polynomials.
doi_str_mv 10.1007/s40819-022-01360-y
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2680277126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680277126</sourcerecordid><originalsourceid>FETCH-LOGICAL-p72y-b97171f848b6ff6c67a3ee21613dd8119e1d5c85f882bbe3731f9f46dd21d07d3</originalsourceid><addsrcrecordid>eNpFkMFKw0AURQdRsNT-gKsBNwqNvjeTzkyWUmwrCAotuAxJ501JqUk6kxbiyt_wS9z7KX6J0Qqu7l2c9y4cxs4RrhFA34QYDCYRCBEBSgVRe8R6ApMkGulEHXddxl1HkKdsEMIaAATGGoTpsed59UL8yVc1-aagwCvHp1SSzzbFK1k-98U-C022z77e3gNf-KLeEJ-1Hb6i7rTxxZJPduWyKaqSz8bDeri9_Py4OmMnLtsEGvxlny0md4vxLHp4nN6Pbx-iWos2yhONGp2JTa6cU0ulM0kkUKG01iAmhHa0NCNnjMhzklqiS1ysrBVoQVvZZxeHt7WvtjsKTbqudr7sFlOhDAitUaiOkgcq1L4oV-T_KYT0x2F6cJh2DtNfh2krvwFO_GY2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680277126</pqid></control><display><type>article</type><title>Some Properties of Generalized Srivastava’s Triple Hypergeometric Function HC,p,q(·)</title><source>SpringerLink Journals</source><creator>Dar, S. A. ; Kamarujjama, M. ; Daud, M.</creator><creatorcontrib>Dar, S. A. ; Kamarujjama, M. ; Daud, M.</creatorcontrib><description>In this paper, we obtain a ( p , q ) - generalization of Srivastava’s triple hypergeometric function H C ( · ) , along with its integral representations by using extended Beta function B p , q ( x , y ) introduced in 2014 by Choi et al. Also, we discuss some of its main fundamental properties such as the Mellin transform, derivative formula, recursive identity, and a bounded inequality. In addition, we obtain an integral form of H C , p , q ( · ) function involving Laguerre polynomials.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-022-01360-y</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Computational mathematics ; Computational Science and Engineering ; Hypergeometric functions ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Mellin transforms ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Polynomials ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2022, Vol.8 (4)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p72y-b97171f848b6ff6c67a3ee21613dd8119e1d5c85f882bbe3731f9f46dd21d07d3</cites><orcidid>0000-0002-5864-7793 ; 0000-0003-2015-4587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-022-01360-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-022-01360-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dar, S. A.</creatorcontrib><creatorcontrib>Kamarujjama, M.</creatorcontrib><creatorcontrib>Daud, M.</creatorcontrib><title>Some Properties of Generalized Srivastava’s Triple Hypergeometric Function HC,p,q(·)</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>In this paper, we obtain a ( p , q ) - generalization of Srivastava’s triple hypergeometric function H C ( · ) , along with its integral representations by using extended Beta function B p , q ( x , y ) introduced in 2014 by Choi et al. Also, we discuss some of its main fundamental properties such as the Mellin transform, derivative formula, recursive identity, and a bounded inequality. In addition, we obtain an integral form of H C , p , q ( · ) function involving Laguerre polynomials.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Hypergeometric functions</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mellin transforms</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMFKw0AURQdRsNT-gKsBNwqNvjeTzkyWUmwrCAotuAxJ501JqUk6kxbiyt_wS9z7KX6J0Qqu7l2c9y4cxs4RrhFA34QYDCYRCBEBSgVRe8R6ApMkGulEHXddxl1HkKdsEMIaAATGGoTpsed59UL8yVc1-aagwCvHp1SSzzbFK1k-98U-C022z77e3gNf-KLeEJ-1Hb6i7rTxxZJPduWyKaqSz8bDeri9_Py4OmMnLtsEGvxlny0md4vxLHp4nN6Pbx-iWos2yhONGp2JTa6cU0ulM0kkUKG01iAmhHa0NCNnjMhzklqiS1ysrBVoQVvZZxeHt7WvtjsKTbqudr7sFlOhDAitUaiOkgcq1L4oV-T_KYT0x2F6cJh2DtNfh2krvwFO_GY2</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dar, S. A.</creator><creator>Kamarujjama, M.</creator><creator>Daud, M.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-5864-7793</orcidid><orcidid>https://orcid.org/0000-0003-2015-4587</orcidid></search><sort><creationdate>2022</creationdate><title>Some Properties of Generalized Srivastava’s Triple Hypergeometric Function HC,p,q(·)</title><author>Dar, S. A. ; Kamarujjama, M. ; Daud, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p72y-b97171f848b6ff6c67a3ee21613dd8119e1d5c85f882bbe3731f9f46dd21d07d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Hypergeometric functions</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mellin transforms</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dar, S. A.</creatorcontrib><creatorcontrib>Kamarujjama, M.</creatorcontrib><creatorcontrib>Daud, M.</creatorcontrib><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dar, S. A.</au><au>Kamarujjama, M.</au><au>Daud, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Properties of Generalized Srivastava’s Triple Hypergeometric Function HC,p,q(·)</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2022</date><risdate>2022</risdate><volume>8</volume><issue>4</issue><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>In this paper, we obtain a ( p , q ) - generalization of Srivastava’s triple hypergeometric function H C ( · ) , along with its integral representations by using extended Beta function B p , q ( x , y ) introduced in 2014 by Choi et al. Also, we discuss some of its main fundamental properties such as the Mellin transform, derivative formula, recursive identity, and a bounded inequality. In addition, we obtain an integral form of H C , p , q ( · ) function involving Laguerre polynomials.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-022-01360-y</doi><orcidid>https://orcid.org/0000-0002-5864-7793</orcidid><orcidid>https://orcid.org/0000-0003-2015-4587</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2349-5103
ispartof International journal of applied and computational mathematics, 2022, Vol.8 (4)
issn 2349-5103
2199-5796
language eng
recordid cdi_proquest_journals_2680277126
source SpringerLink Journals
subjects Applications of Mathematics
Applied mathematics
Computational mathematics
Computational Science and Engineering
Hypergeometric functions
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Mellin transforms
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Polynomials
Theoretical
title Some Properties of Generalized Srivastava’s Triple Hypergeometric Function HC,p,q(·)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Properties%20of%20Generalized%20Srivastava%E2%80%99s%20Triple%20Hypergeometric%20Function%20HC,p,q(%C2%B7)&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Dar,%20S.%20A.&rft.date=2022&rft.volume=8&rft.issue=4&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-022-01360-y&rft_dat=%3Cproquest_sprin%3E2680277126%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680277126&rft_id=info:pmid/&rfr_iscdi=true