Properties of a quasi-uniformly monotone operator and its application to the electromagnetic p-curl systems

In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation Au = b . We prove that if A is a quasi-uniformly monotone and hemi-continuous operator, then A −1 is strictly monotone, bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applications of mathematics (Prague) 2022-08, Vol.67 (4), p.431-444
Hauptverfasser: Song, Chang-Ho, Ri, Yong-Gon, Sin, Cholmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 444
container_issue 4
container_start_page 431
container_title Applications of mathematics (Prague)
container_volume 67
creator Song, Chang-Ho
Ri, Yong-Gon
Sin, Cholmin
description In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation Au = b . We prove that if A is a quasi-uniformly monotone and hemi-continuous operator, then A −1 is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence of Galerkin approximations to the solution of steady-state electromagnetic p -curl systems.
doi_str_mv 10.21136/AM.2021.0365-20
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2680276717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680276717</sourcerecordid><originalsourceid>FETCH-LOGICAL-p225t-acefaf59504da5bcf5c812657401f170b2d3aeea8504ef5a00d0fc39be7efa0c3</originalsourceid><addsrcrecordid>eNpFkD1PwzAURS0EEqWwM1pidnl26jgZq4ovqRUMMEeu81xcUju1nYF_T0qRmN4dzr1POoTccpgJzovyfrGeCRB8BkUpmYAzMuFSCVZzqM_JBKpSMFXP4ZJcpbQDgLqsqgn5eouhx5gdJhos1fQw6OTY4J0Ncd99033wIQeP9IjpHCLVvqUuJ6r7vnNGZxc8zYHmT6TYockx7PXWY3aG9swMsaPpO2Xcp2tyYXWX8ObvTsnH48P78pmtXp9elosV64WQmWmDVltZS5i3Wm6MlabiopRqDtxyBRvRFhpRVyOAVmqAFqwp6g2qsQimmJK7024fw2HAlJtdGKIfXzairECoUnE1UvxEpT46v8X4T3Fofp02i3VzdNocnY6p-AHyi2zH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680276717</pqid></control><display><type>article</type><title>Properties of a quasi-uniformly monotone operator and its application to the electromagnetic p-curl systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><creator>Song, Chang-Ho ; Ri, Yong-Gon ; Sin, Cholmin</creator><creatorcontrib>Song, Chang-Ho ; Ri, Yong-Gon ; Sin, Cholmin</creatorcontrib><description>In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation Au = b . We prove that if A is a quasi-uniformly monotone and hemi-continuous operator, then A −1 is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence of Galerkin approximations to the solution of steady-state electromagnetic p -curl systems.</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.21136/AM.2021.0365-20</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Applications of Mathematics ; Classical and Continuum Physics ; Convergence ; Galerkin method ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Optimization ; Theoretical</subject><ispartof>Applications of mathematics (Prague), 2022-08, Vol.67 (4), p.431-444</ispartof><rights>Institute of Mathematics, Czech Academy of Sciences 2021</rights><rights>Institute of Mathematics, Czech Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p225t-acefaf59504da5bcf5c812657401f170b2d3aeea8504ef5a00d0fc39be7efa0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/AM.2021.0365-20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/AM.2021.0365-20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Song, Chang-Ho</creatorcontrib><creatorcontrib>Ri, Yong-Gon</creatorcontrib><creatorcontrib>Sin, Cholmin</creatorcontrib><title>Properties of a quasi-uniformly monotone operator and its application to the electromagnetic p-curl systems</title><title>Applications of mathematics (Prague)</title><addtitle>Appl Math</addtitle><description>In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation Au = b . We prove that if A is a quasi-uniformly monotone and hemi-continuous operator, then A −1 is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence of Galerkin approximations to the solution of steady-state electromagnetic p -curl systems.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Convergence</subject><subject>Galerkin method</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Theoretical</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAURS0EEqWwM1pidnl26jgZq4ovqRUMMEeu81xcUju1nYF_T0qRmN4dzr1POoTccpgJzovyfrGeCRB8BkUpmYAzMuFSCVZzqM_JBKpSMFXP4ZJcpbQDgLqsqgn5eouhx5gdJhos1fQw6OTY4J0Ncd99033wIQeP9IjpHCLVvqUuJ6r7vnNGZxc8zYHmT6TYockx7PXWY3aG9swMsaPpO2Xcp2tyYXWX8ObvTsnH48P78pmtXp9elosV64WQmWmDVltZS5i3Wm6MlabiopRqDtxyBRvRFhpRVyOAVmqAFqwp6g2qsQimmJK7024fw2HAlJtdGKIfXzairECoUnE1UvxEpT46v8X4T3Fofp02i3VzdNocnY6p-AHyi2zH</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Song, Chang-Ho</creator><creator>Ri, Yong-Gon</creator><creator>Sin, Cholmin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220801</creationdate><title>Properties of a quasi-uniformly monotone operator and its application to the electromagnetic p-curl systems</title><author>Song, Chang-Ho ; Ri, Yong-Gon ; Sin, Cholmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p225t-acefaf59504da5bcf5c812657401f170b2d3aeea8504ef5a00d0fc39be7efa0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Convergence</topic><topic>Galerkin method</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Chang-Ho</creatorcontrib><creatorcontrib>Ri, Yong-Gon</creatorcontrib><creatorcontrib>Sin, Cholmin</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applications of mathematics (Prague)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Chang-Ho</au><au>Ri, Yong-Gon</au><au>Sin, Cholmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of a quasi-uniformly monotone operator and its application to the electromagnetic p-curl systems</atitle><jtitle>Applications of mathematics (Prague)</jtitle><stitle>Appl Math</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>67</volume><issue>4</issue><spage>431</spage><epage>444</epage><pages>431-444</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation Au = b . We prove that if A is a quasi-uniformly monotone and hemi-continuous operator, then A −1 is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence of Galerkin approximations to the solution of steady-state electromagnetic p -curl systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/AM.2021.0365-20</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0862-7940
ispartof Applications of mathematics (Prague), 2022-08, Vol.67 (4), p.431-444
issn 0862-7940
1572-9109
language eng
recordid cdi_proquest_journals_2680276717
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals
subjects Analysis
Applications of Mathematics
Classical and Continuum Physics
Convergence
Galerkin method
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Optimization
Theoretical
title Properties of a quasi-uniformly monotone operator and its application to the electromagnetic p-curl systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20a%20quasi-uniformly%20monotone%20operator%20and%20its%20application%20to%20the%20electromagnetic%20p-curl%20systems&rft.jtitle=Applications%20of%20mathematics%20(Prague)&rft.au=Song,%20Chang-Ho&rft.date=2022-08-01&rft.volume=67&rft.issue=4&rft.spage=431&rft.epage=444&rft.pages=431-444&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.21136/AM.2021.0365-20&rft_dat=%3Cproquest_sprin%3E2680276717%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680276717&rft_id=info:pmid/&rfr_iscdi=true