Impact of freely falling liquid containers and subsequent jetting

When a container, partially filled with liquid, is dropped from a certain height onto a floor, it will undergo a sudden deceleration followed by a rebound. At the moment of the container impact, the free-surface meniscus experiences large radial pressure gradients forming a high-velocity surface jet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2022-07, Vol.63 (7), Article 108
Hauptverfasser: Krishnan, Sangeeth, Bharadwaj, Sunil V., Vasan, Vishal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Experiments in fluids
container_volume 63
creator Krishnan, Sangeeth
Bharadwaj, Sunil V.
Vasan, Vishal
description When a container, partially filled with liquid, is dropped from a certain height onto a floor, it will undergo a sudden deceleration followed by a rebound. At the moment of the container impact, the free-surface meniscus experiences large radial pressure gradients forming a high-velocity surface jet. We report experimental results and scaling analysis of the jet formation, showing that the jet initiation could also occur during the sudden deceleration phase. We show that the jet velocity scales as the geometric mean of the impact velocity and curvature-deformation velocity scale. We also report results for a second-jet originating from the tip of the evolving first-jet that resembles the tubular jets observed earlier in liquid entry to a pipe problem (Lorenceau et al. in Phys Fluids 14(6):1985–1992, 2002, Bergmann et al. in J Fluid Mech 600:19–43, 2008). We show that the second-jet follows a capillary velocity scale, unlike the tubular jet. The second-jet is caused by the collapse of an unstable cavity at the first-jet tip. The cavity radius follows an inertia-capillary scaling: r ∼ ( t s - t ) 1 / 2 , where t s - t is the time to singularity. Graphical Abstract
doi_str_mv 10.1007/s00348-022-03452-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680276649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680276649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3add42c3205103dafb4983b48df96d8a1c6d03fba6513012ac01a6889d1122c43</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvubMd1xqrio1IlFpgtx3aqRGnS2snQf48hSGxMd8PzvHd6CblHeESA1VMCEFIz4JzlpeBMXJAFSsEZIspLsoAVF0xqJa_JTUotABYl6AVZbw9H60Y61LSOIXRnWtuua_o97ZrT1Hjqhn60TR9iorb3NE1VCqcp9CNtwzhm8JZcZSWFu9-5JJ8vzx-bN7Z7f91u1jvmBJYjE9Z7yZ3gUCAIb-tKllpUUvu6VF5bdMqDqCurChSA3DpAq7QuPSLnTooleZhzj3HID6TRtMMU-3zScKWBr5SSZab4TLk4pBRDbY6xOdh4NgjmuyozV2VyVeanKiOyJGYpZbjfh_gX_Y_1BVe-azo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680276649</pqid></control><display><type>article</type><title>Impact of freely falling liquid containers and subsequent jetting</title><source>Springer Nature - Complete Springer Journals</source><creator>Krishnan, Sangeeth ; Bharadwaj, Sunil V. ; Vasan, Vishal</creator><creatorcontrib>Krishnan, Sangeeth ; Bharadwaj, Sunil V. ; Vasan, Vishal</creatorcontrib><description>When a container, partially filled with liquid, is dropped from a certain height onto a floor, it will undergo a sudden deceleration followed by a rebound. At the moment of the container impact, the free-surface meniscus experiences large radial pressure gradients forming a high-velocity surface jet. We report experimental results and scaling analysis of the jet formation, showing that the jet initiation could also occur during the sudden deceleration phase. We show that the jet velocity scales as the geometric mean of the impact velocity and curvature-deformation velocity scale. We also report results for a second-jet originating from the tip of the evolving first-jet that resembles the tubular jets observed earlier in liquid entry to a pipe problem (Lorenceau et al. in Phys Fluids 14(6):1985–1992, 2002, Bergmann et al. in J Fluid Mech 600:19–43, 2008). We show that the second-jet follows a capillary velocity scale, unlike the tubular jet. The second-jet is caused by the collapse of an unstable cavity at the first-jet tip. The cavity radius follows an inertia-capillary scaling: r ∼ ( t s - t ) 1 / 2 , where t s - t is the time to singularity. Graphical Abstract</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-022-03452-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Containers ; Deceleration ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid- and Aerodynamics ; Free surfaces ; Heat and Mass Transfer ; Impact velocity ; Pressure gradients ; Research Article ; Surface jets ; Velocity</subject><ispartof>Experiments in fluids, 2022-07, Vol.63 (7), Article 108</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3add42c3205103dafb4983b48df96d8a1c6d03fba6513012ac01a6889d1122c43</citedby><cites>FETCH-LOGICAL-c319t-3add42c3205103dafb4983b48df96d8a1c6d03fba6513012ac01a6889d1122c43</cites><orcidid>0000-0001-6588-6461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-022-03452-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-022-03452-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Krishnan, Sangeeth</creatorcontrib><creatorcontrib>Bharadwaj, Sunil V.</creatorcontrib><creatorcontrib>Vasan, Vishal</creatorcontrib><title>Impact of freely falling liquid containers and subsequent jetting</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>When a container, partially filled with liquid, is dropped from a certain height onto a floor, it will undergo a sudden deceleration followed by a rebound. At the moment of the container impact, the free-surface meniscus experiences large radial pressure gradients forming a high-velocity surface jet. We report experimental results and scaling analysis of the jet formation, showing that the jet initiation could also occur during the sudden deceleration phase. We show that the jet velocity scales as the geometric mean of the impact velocity and curvature-deformation velocity scale. We also report results for a second-jet originating from the tip of the evolving first-jet that resembles the tubular jets observed earlier in liquid entry to a pipe problem (Lorenceau et al. in Phys Fluids 14(6):1985–1992, 2002, Bergmann et al. in J Fluid Mech 600:19–43, 2008). We show that the second-jet follows a capillary velocity scale, unlike the tubular jet. The second-jet is caused by the collapse of an unstable cavity at the first-jet tip. The cavity radius follows an inertia-capillary scaling: r ∼ ( t s - t ) 1 / 2 , where t s - t is the time to singularity. Graphical Abstract</description><subject>Containers</subject><subject>Deceleration</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Free surfaces</subject><subject>Heat and Mass Transfer</subject><subject>Impact velocity</subject><subject>Pressure gradients</subject><subject>Research Article</subject><subject>Surface jets</subject><subject>Velocity</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvubMd1xqrio1IlFpgtx3aqRGnS2snQf48hSGxMd8PzvHd6CblHeESA1VMCEFIz4JzlpeBMXJAFSsEZIspLsoAVF0xqJa_JTUotABYl6AVZbw9H60Y61LSOIXRnWtuua_o97ZrT1Hjqhn60TR9iorb3NE1VCqcp9CNtwzhm8JZcZSWFu9-5JJ8vzx-bN7Z7f91u1jvmBJYjE9Z7yZ3gUCAIb-tKllpUUvu6VF5bdMqDqCurChSA3DpAq7QuPSLnTooleZhzj3HID6TRtMMU-3zScKWBr5SSZab4TLk4pBRDbY6xOdh4NgjmuyozV2VyVeanKiOyJGYpZbjfh_gX_Y_1BVe-azo</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Krishnan, Sangeeth</creator><creator>Bharadwaj, Sunil V.</creator><creator>Vasan, Vishal</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6588-6461</orcidid></search><sort><creationdate>20220701</creationdate><title>Impact of freely falling liquid containers and subsequent jetting</title><author>Krishnan, Sangeeth ; Bharadwaj, Sunil V. ; Vasan, Vishal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3add42c3205103dafb4983b48df96d8a1c6d03fba6513012ac01a6889d1122c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Containers</topic><topic>Deceleration</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Free surfaces</topic><topic>Heat and Mass Transfer</topic><topic>Impact velocity</topic><topic>Pressure gradients</topic><topic>Research Article</topic><topic>Surface jets</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Sangeeth</creatorcontrib><creatorcontrib>Bharadwaj, Sunil V.</creatorcontrib><creatorcontrib>Vasan, Vishal</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnan, Sangeeth</au><au>Bharadwaj, Sunil V.</au><au>Vasan, Vishal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of freely falling liquid containers and subsequent jetting</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>63</volume><issue>7</issue><artnum>108</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>When a container, partially filled with liquid, is dropped from a certain height onto a floor, it will undergo a sudden deceleration followed by a rebound. At the moment of the container impact, the free-surface meniscus experiences large radial pressure gradients forming a high-velocity surface jet. We report experimental results and scaling analysis of the jet formation, showing that the jet initiation could also occur during the sudden deceleration phase. We show that the jet velocity scales as the geometric mean of the impact velocity and curvature-deformation velocity scale. We also report results for a second-jet originating from the tip of the evolving first-jet that resembles the tubular jets observed earlier in liquid entry to a pipe problem (Lorenceau et al. in Phys Fluids 14(6):1985–1992, 2002, Bergmann et al. in J Fluid Mech 600:19–43, 2008). We show that the second-jet follows a capillary velocity scale, unlike the tubular jet. The second-jet is caused by the collapse of an unstable cavity at the first-jet tip. The cavity radius follows an inertia-capillary scaling: r ∼ ( t s - t ) 1 / 2 , where t s - t is the time to singularity. Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-022-03452-3</doi><orcidid>https://orcid.org/0000-0001-6588-6461</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2022-07, Vol.63 (7), Article 108
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_journals_2680276649
source Springer Nature - Complete Springer Journals
subjects Containers
Deceleration
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid- and Aerodynamics
Free surfaces
Heat and Mass Transfer
Impact velocity
Pressure gradients
Research Article
Surface jets
Velocity
title Impact of freely falling liquid containers and subsequent jetting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T15%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20freely%20falling%20liquid%20containers%20and%20subsequent%20jetting&rft.jtitle=Experiments%20in%20fluids&rft.au=Krishnan,%20Sangeeth&rft.date=2022-07-01&rft.volume=63&rft.issue=7&rft.artnum=108&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-022-03452-3&rft_dat=%3Cproquest_cross%3E2680276649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680276649&rft_id=info:pmid/&rfr_iscdi=true