Study of the optical response of oxidized porous silicon structures by thermal oxidation in air

This work proposes a methodology based on porous silicon (PSi) thermal oxidation in an air atmosphere to reduce its optical losses and change the optical response of one-dimensional photonic structures through the porosity variations, pore filling, and refractive index tuning. First, electrochemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2022-06, Vol.57 (24), p.11226-11241
Hauptverfasser: Sierra-Moreno, R. F., Lujan-Cabrera, I. A., Cabrera-Teran, J. M., Ortiz-Vazquez, Eric, Rodriguez-Garcia, M. E., Ramirez-Gutierrez, C. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11241
container_issue 24
container_start_page 11226
container_title Journal of materials science
container_volume 57
creator Sierra-Moreno, R. F.
Lujan-Cabrera, I. A.
Cabrera-Teran, J. M.
Ortiz-Vazquez, Eric
Rodriguez-Garcia, M. E.
Ramirez-Gutierrez, C. F.
description This work proposes a methodology based on porous silicon (PSi) thermal oxidation in an air atmosphere to reduce its optical losses and change the optical response of one-dimensional photonic structures through the porosity variations, pore filling, and refractive index tuning. First, electrochemical etching was used to fabricate PSi samples at two different anodizing currents and in-situ photoacoustic monitoring was used to guarantee the porous film’s reproducibility. Then, the PSi samples were oxidized in an air atmosphere at temperatures of 600, 800, and 1000 ∘ C and different sintering times (0 h, 5 h, 10 h, and 20 h). All the samples were characterized by Fourier-transform infrared spectroscopy (FTIR) and scanning electronic microscopy (SEM) to determine the chemical and morphological evolution produced for thermal treatment. In addition, the optical properties were analyzed by UV-Vis spectroscopy before and after the thermal treatment to relate the obtained spectra with the characteristics of the monolayers using the transfer matrix method (TMM), effective medium theory, and genetic algorithms (GA). Finally, we predicted the optical response of oxidized porous silicon one-dimensional photonic crystal for UV-Vis range applications.
doi_str_mv 10.1007/s10853-022-07376-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2679962651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A708153546</galeid><sourcerecordid>A708153546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-74e81ae26bc92fa2a61c63a5f522d186213034375e8ced6cf23a44f2f2ffe7623</originalsourceid><addsrcrecordid>eNp9kUFLHTEQx4NU6FP7BXoK9ORhNZlskn1HEbWCIGh7DjE7eUbe22yTLPj89M12BfFS5hCY-f0yCX9CvnN2xhnT55mzToqGATRMC60aeUBWXGrRtB0TX8iKzSNoFf9KjnJ-YYxJDXxFzGOZ-j2NnpZnpHEswdktTZjHOGSc-_E19OENezrGFKdMc9gGFweaS5pcmSpKn_aznXbVnGlbQp2HgdqQTsiht9uM397PY_L7-urX5c_m7v7m9vLirnFiDaXRLXbcIqgntwZvwSrulLDSS4Cedwq4YKIVWmLnsFfOg7Bt66GWR61AHJMfy71jin8mzMW8xCkNdaUBpddrBUrySp0t1MZu0YTBx5Ksq9Xjbv4U-lD7F5p1XArZqiqcfhIqU_C1bOyUs7l9fPjMwsK6FHNO6M2Yws6mveHMzCmZJSVTozD_UjKySmKRcoWHDaaPd__H-guFeJSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679962651</pqid></control><display><type>article</type><title>Study of the optical response of oxidized porous silicon structures by thermal oxidation in air</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sierra-Moreno, R. F. ; Lujan-Cabrera, I. A. ; Cabrera-Teran, J. M. ; Ortiz-Vazquez, Eric ; Rodriguez-Garcia, M. E. ; Ramirez-Gutierrez, C. F.</creator><creatorcontrib>Sierra-Moreno, R. F. ; Lujan-Cabrera, I. A. ; Cabrera-Teran, J. M. ; Ortiz-Vazquez, Eric ; Rodriguez-Garcia, M. E. ; Ramirez-Gutierrez, C. F.</creatorcontrib><description>This work proposes a methodology based on porous silicon (PSi) thermal oxidation in an air atmosphere to reduce its optical losses and change the optical response of one-dimensional photonic structures through the porosity variations, pore filling, and refractive index tuning. First, electrochemical etching was used to fabricate PSi samples at two different anodizing currents and in-situ photoacoustic monitoring was used to guarantee the porous film’s reproducibility. Then, the PSi samples were oxidized in an air atmosphere at temperatures of 600, 800, and 1000 ∘ C and different sintering times (0 h, 5 h, 10 h, and 20 h). All the samples were characterized by Fourier-transform infrared spectroscopy (FTIR) and scanning electronic microscopy (SEM) to determine the chemical and morphological evolution produced for thermal treatment. In addition, the optical properties were analyzed by UV-Vis spectroscopy before and after the thermal treatment to relate the obtained spectra with the characteristics of the monolayers using the transfer matrix method (TMM), effective medium theory, and genetic algorithms (GA). Finally, we predicted the optical response of oxidized porous silicon one-dimensional photonic crystal for UV-Vis range applications.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-022-07376-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Effective medium theory ; Electric properties ; Electrochemical etching ; Electronic Materials ; Fourier transforms ; Genetic algorithms ; Heat treatment ; Infrared spectroscopy ; Materials Science ; Matrix methods ; Optical properties ; Oxidation ; Oxidation-reduction reaction ; Photonic crystals ; Polymer Sciences ; Porosity ; Porous silicon ; Refractivity ; Silicon ; Sintering (powder metallurgy) ; Solid Mechanics ; Spectrum analysis ; Thermal analysis ; Transfer matrices</subject><ispartof>Journal of materials science, 2022-06, Vol.57 (24), p.11226-11241</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-74e81ae26bc92fa2a61c63a5f522d186213034375e8ced6cf23a44f2f2ffe7623</citedby><cites>FETCH-LOGICAL-c392t-74e81ae26bc92fa2a61c63a5f522d186213034375e8ced6cf23a44f2f2ffe7623</cites><orcidid>0000-0002-0450-5810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-022-07376-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-022-07376-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sierra-Moreno, R. F.</creatorcontrib><creatorcontrib>Lujan-Cabrera, I. A.</creatorcontrib><creatorcontrib>Cabrera-Teran, J. M.</creatorcontrib><creatorcontrib>Ortiz-Vazquez, Eric</creatorcontrib><creatorcontrib>Rodriguez-Garcia, M. E.</creatorcontrib><creatorcontrib>Ramirez-Gutierrez, C. F.</creatorcontrib><title>Study of the optical response of oxidized porous silicon structures by thermal oxidation in air</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This work proposes a methodology based on porous silicon (PSi) thermal oxidation in an air atmosphere to reduce its optical losses and change the optical response of one-dimensional photonic structures through the porosity variations, pore filling, and refractive index tuning. First, electrochemical etching was used to fabricate PSi samples at two different anodizing currents and in-situ photoacoustic monitoring was used to guarantee the porous film’s reproducibility. Then, the PSi samples were oxidized in an air atmosphere at temperatures of 600, 800, and 1000 ∘ C and different sintering times (0 h, 5 h, 10 h, and 20 h). All the samples were characterized by Fourier-transform infrared spectroscopy (FTIR) and scanning electronic microscopy (SEM) to determine the chemical and morphological evolution produced for thermal treatment. In addition, the optical properties were analyzed by UV-Vis spectroscopy before and after the thermal treatment to relate the obtained spectra with the characteristics of the monolayers using the transfer matrix method (TMM), effective medium theory, and genetic algorithms (GA). Finally, we predicted the optical response of oxidized porous silicon one-dimensional photonic crystal for UV-Vis range applications.</description><subject>Analysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Effective medium theory</subject><subject>Electric properties</subject><subject>Electrochemical etching</subject><subject>Electronic Materials</subject><subject>Fourier transforms</subject><subject>Genetic algorithms</subject><subject>Heat treatment</subject><subject>Infrared spectroscopy</subject><subject>Materials Science</subject><subject>Matrix methods</subject><subject>Optical properties</subject><subject>Oxidation</subject><subject>Oxidation-reduction reaction</subject><subject>Photonic crystals</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Porous silicon</subject><subject>Refractivity</subject><subject>Silicon</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Thermal analysis</subject><subject>Transfer matrices</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUFLHTEQx4NU6FP7BXoK9ORhNZlskn1HEbWCIGh7DjE7eUbe22yTLPj89M12BfFS5hCY-f0yCX9CvnN2xhnT55mzToqGATRMC60aeUBWXGrRtB0TX8iKzSNoFf9KjnJ-YYxJDXxFzGOZ-j2NnpZnpHEswdktTZjHOGSc-_E19OENezrGFKdMc9gGFweaS5pcmSpKn_aznXbVnGlbQp2HgdqQTsiht9uM397PY_L7-urX5c_m7v7m9vLirnFiDaXRLXbcIqgntwZvwSrulLDSS4Cedwq4YKIVWmLnsFfOg7Bt66GWR61AHJMfy71jin8mzMW8xCkNdaUBpddrBUrySp0t1MZu0YTBx5Ksq9Xjbv4U-lD7F5p1XArZqiqcfhIqU_C1bOyUs7l9fPjMwsK6FHNO6M2Yws6mveHMzCmZJSVTozD_UjKySmKRcoWHDaaPd__H-guFeJSs</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Sierra-Moreno, R. F.</creator><creator>Lujan-Cabrera, I. A.</creator><creator>Cabrera-Teran, J. M.</creator><creator>Ortiz-Vazquez, Eric</creator><creator>Rodriguez-Garcia, M. E.</creator><creator>Ramirez-Gutierrez, C. F.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0450-5810</orcidid></search><sort><creationdate>20220601</creationdate><title>Study of the optical response of oxidized porous silicon structures by thermal oxidation in air</title><author>Sierra-Moreno, R. F. ; Lujan-Cabrera, I. A. ; Cabrera-Teran, J. M. ; Ortiz-Vazquez, Eric ; Rodriguez-Garcia, M. E. ; Ramirez-Gutierrez, C. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-74e81ae26bc92fa2a61c63a5f522d186213034375e8ced6cf23a44f2f2ffe7623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Effective medium theory</topic><topic>Electric properties</topic><topic>Electrochemical etching</topic><topic>Electronic Materials</topic><topic>Fourier transforms</topic><topic>Genetic algorithms</topic><topic>Heat treatment</topic><topic>Infrared spectroscopy</topic><topic>Materials Science</topic><topic>Matrix methods</topic><topic>Optical properties</topic><topic>Oxidation</topic><topic>Oxidation-reduction reaction</topic><topic>Photonic crystals</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Porous silicon</topic><topic>Refractivity</topic><topic>Silicon</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Thermal analysis</topic><topic>Transfer matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sierra-Moreno, R. F.</creatorcontrib><creatorcontrib>Lujan-Cabrera, I. A.</creatorcontrib><creatorcontrib>Cabrera-Teran, J. M.</creatorcontrib><creatorcontrib>Ortiz-Vazquez, Eric</creatorcontrib><creatorcontrib>Rodriguez-Garcia, M. E.</creatorcontrib><creatorcontrib>Ramirez-Gutierrez, C. F.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sierra-Moreno, R. F.</au><au>Lujan-Cabrera, I. A.</au><au>Cabrera-Teran, J. M.</au><au>Ortiz-Vazquez, Eric</au><au>Rodriguez-Garcia, M. E.</au><au>Ramirez-Gutierrez, C. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the optical response of oxidized porous silicon structures by thermal oxidation in air</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>57</volume><issue>24</issue><spage>11226</spage><epage>11241</epage><pages>11226-11241</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This work proposes a methodology based on porous silicon (PSi) thermal oxidation in an air atmosphere to reduce its optical losses and change the optical response of one-dimensional photonic structures through the porosity variations, pore filling, and refractive index tuning. First, electrochemical etching was used to fabricate PSi samples at two different anodizing currents and in-situ photoacoustic monitoring was used to guarantee the porous film’s reproducibility. Then, the PSi samples were oxidized in an air atmosphere at temperatures of 600, 800, and 1000 ∘ C and different sintering times (0 h, 5 h, 10 h, and 20 h). All the samples were characterized by Fourier-transform infrared spectroscopy (FTIR) and scanning electronic microscopy (SEM) to determine the chemical and morphological evolution produced for thermal treatment. In addition, the optical properties were analyzed by UV-Vis spectroscopy before and after the thermal treatment to relate the obtained spectra with the characteristics of the monolayers using the transfer matrix method (TMM), effective medium theory, and genetic algorithms (GA). Finally, we predicted the optical response of oxidized porous silicon one-dimensional photonic crystal for UV-Vis range applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-022-07376-5</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0450-5810</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2022-06, Vol.57 (24), p.11226-11241
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2679962651
source SpringerLink Journals - AutoHoldings
subjects Analysis
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Effective medium theory
Electric properties
Electrochemical etching
Electronic Materials
Fourier transforms
Genetic algorithms
Heat treatment
Infrared spectroscopy
Materials Science
Matrix methods
Optical properties
Oxidation
Oxidation-reduction reaction
Photonic crystals
Polymer Sciences
Porosity
Porous silicon
Refractivity
Silicon
Sintering (powder metallurgy)
Solid Mechanics
Spectrum analysis
Thermal analysis
Transfer matrices
title Study of the optical response of oxidized porous silicon structures by thermal oxidation in air
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20optical%20response%20of%20oxidized%20porous%20silicon%20structures%20by%20thermal%20oxidation%20in%20air&rft.jtitle=Journal%20of%20materials%20science&rft.au=Sierra-Moreno,%20R.%20F.&rft.date=2022-06-01&rft.volume=57&rft.issue=24&rft.spage=11226&rft.epage=11241&rft.pages=11226-11241&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-022-07376-5&rft_dat=%3Cgale_proqu%3EA708153546%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679962651&rft_id=info:pmid/&rft_galeid=A708153546&rfr_iscdi=true