Close Interval Approximation of Pentagonal Fuzzy Numbers for Interval Data-Based Transportation Problems
Due to globalization in this modern age of technology and other uncontrollable influences, transportation parameters can differ within a certain range of a given period. In this situation, a managerial position’s objective is to make appropriate decisions for the decision-makers. However, in general...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-06, Vol.14 (12), p.7423 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 7423 |
container_title | Sustainability |
container_volume | 14 |
creator | Juman, Z. A. M. S. Mostafa, Salama A. Batuwita, A. P. AlArjani, Ali Sharif Uddin, Md Jaber, Mustafa Musa Alam, Teg Attia, El-Awady |
description | Due to globalization in this modern age of technology and other uncontrollable influences, transportation parameters can differ within a certain range of a given period. In this situation, a managerial position’s objective is to make appropriate decisions for the decision-makers. However, in general, the determination of an exact solution to the interval data-based transportation problem (IDTP) becomes an NP-hard problem as the number of choices within their respective ranges increases enormously when the number of suppliers and buyers increases. So, in practice, it is difficult for an exact method to find the exact solution to the IDTP in a reasonable time, specifically the large-sized problems with large interval sizes. This paper introduces solutions to the IDTP where supply, demand, and cost are all in interval numbers. One of the best interval approximations, namely the closed interval approximation of pentagonal fuzzy number, is proposed for solving the IDTP. First, in the proposed closed interval approximation method (Method-1), the pentagonal fuzzification method converts the IDTP to a fuzzy transportation problem (FTP). Subsequently, two new ranking methods based on centroid and in-center triangle concepts are presented to transfer the pentagonal fuzzy number into the corresponding crisp (non-fuzzy) value. Thereafter, the optimal solution was obtained using Vogel’s approximation method coupled with the modified distribution method. The proposed Method-1 is reported against a recent method and shows superior performance over the aforementioned and a proposed Method-2 via benchmark instances and new instances. |
doi_str_mv | 10.3390/su14127423 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2679844941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679844941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5f0f9f7d485f4c3f51330cc9b39d7ede43d1c0b9ba1b2a230346fa63f164c47e3</originalsourceid><addsrcrecordid>eNpNUMFKAzEUDKJgqb34BQFvwmqSl91tjrVaLRTtoZ6XbDbRlu1mzctK2693pUJ9l_dg5g0zQ8g1Z3cAit1jxyUXuRRwRgaC5TzhLGXn_-5LMkLcsH4AuOLZgHxOa4-Wzptow7eu6aRtg9-ttzqufUO9o0vbRP3hmx6bdYfDnr5229IGpM6H09ujjjp50Ggrugq6wdaHeJRYBl_WdotX5MLpGu3obw_J--xpNX1JFm_P8-lkkRih0pikjjnl8kqOUycNuJQDMGNUCarKbWUlVNywUpWal0ILYCAzpzNwPJNG5haG5Oao2-f46izGYuO70NvHQmS5GkupJO9Zt0eWCR4xWFe0oQ8d9gVnxW-ZxalM-AELM2gE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679844941</pqid></control><display><type>article</type><title>Close Interval Approximation of Pentagonal Fuzzy Numbers for Interval Data-Based Transportation Problems</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Juman, Z. A. M. S. ; Mostafa, Salama A. ; Batuwita, A. P. ; AlArjani, Ali ; Sharif Uddin, Md ; Jaber, Mustafa Musa ; Alam, Teg ; Attia, El-Awady</creator><creatorcontrib>Juman, Z. A. M. S. ; Mostafa, Salama A. ; Batuwita, A. P. ; AlArjani, Ali ; Sharif Uddin, Md ; Jaber, Mustafa Musa ; Alam, Teg ; Attia, El-Awady</creatorcontrib><description>Due to globalization in this modern age of technology and other uncontrollable influences, transportation parameters can differ within a certain range of a given period. In this situation, a managerial position’s objective is to make appropriate decisions for the decision-makers. However, in general, the determination of an exact solution to the interval data-based transportation problem (IDTP) becomes an NP-hard problem as the number of choices within their respective ranges increases enormously when the number of suppliers and buyers increases. So, in practice, it is difficult for an exact method to find the exact solution to the IDTP in a reasonable time, specifically the large-sized problems with large interval sizes. This paper introduces solutions to the IDTP where supply, demand, and cost are all in interval numbers. One of the best interval approximations, namely the closed interval approximation of pentagonal fuzzy number, is proposed for solving the IDTP. First, in the proposed closed interval approximation method (Method-1), the pentagonal fuzzification method converts the IDTP to a fuzzy transportation problem (FTP). Subsequently, two new ranking methods based on centroid and in-center triangle concepts are presented to transfer the pentagonal fuzzy number into the corresponding crisp (non-fuzzy) value. Thereafter, the optimal solution was obtained using Vogel’s approximation method coupled with the modified distribution method. The proposed Method-1 is reported against a recent method and shows superior performance over the aforementioned and a proposed Method-2 via benchmark instances and new instances.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14127423</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Approximation method ; Centroids ; Decision making ; Exact solutions ; Fuzzy sets ; Fuzzy systems ; Globalization ; Linear programming ; Mathematical programming ; Methods ; Set theory ; Sustainability ; Transportation problem ; Traveling salesman problem</subject><ispartof>Sustainability, 2022-06, Vol.14 (12), p.7423</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5f0f9f7d485f4c3f51330cc9b39d7ede43d1c0b9ba1b2a230346fa63f164c47e3</citedby><cites>FETCH-LOGICAL-c295t-5f0f9f7d485f4c3f51330cc9b39d7ede43d1c0b9ba1b2a230346fa63f164c47e3</cites><orcidid>0000-0001-5348-502X ; 0000-0003-2703-1969 ; 0000-0002-5777-9428 ; 0000-0001-8314-9473 ; 0000-0001-6889-2218 ; 0000-0002-1538-6124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Juman, Z. A. M. S.</creatorcontrib><creatorcontrib>Mostafa, Salama A.</creatorcontrib><creatorcontrib>Batuwita, A. P.</creatorcontrib><creatorcontrib>AlArjani, Ali</creatorcontrib><creatorcontrib>Sharif Uddin, Md</creatorcontrib><creatorcontrib>Jaber, Mustafa Musa</creatorcontrib><creatorcontrib>Alam, Teg</creatorcontrib><creatorcontrib>Attia, El-Awady</creatorcontrib><title>Close Interval Approximation of Pentagonal Fuzzy Numbers for Interval Data-Based Transportation Problems</title><title>Sustainability</title><description>Due to globalization in this modern age of technology and other uncontrollable influences, transportation parameters can differ within a certain range of a given period. In this situation, a managerial position’s objective is to make appropriate decisions for the decision-makers. However, in general, the determination of an exact solution to the interval data-based transportation problem (IDTP) becomes an NP-hard problem as the number of choices within their respective ranges increases enormously when the number of suppliers and buyers increases. So, in practice, it is difficult for an exact method to find the exact solution to the IDTP in a reasonable time, specifically the large-sized problems with large interval sizes. This paper introduces solutions to the IDTP where supply, demand, and cost are all in interval numbers. One of the best interval approximations, namely the closed interval approximation of pentagonal fuzzy number, is proposed for solving the IDTP. First, in the proposed closed interval approximation method (Method-1), the pentagonal fuzzification method converts the IDTP to a fuzzy transportation problem (FTP). Subsequently, two new ranking methods based on centroid and in-center triangle concepts are presented to transfer the pentagonal fuzzy number into the corresponding crisp (non-fuzzy) value. Thereafter, the optimal solution was obtained using Vogel’s approximation method coupled with the modified distribution method. The proposed Method-1 is reported against a recent method and shows superior performance over the aforementioned and a proposed Method-2 via benchmark instances and new instances.</description><subject>Algorithms</subject><subject>Approximation method</subject><subject>Centroids</subject><subject>Decision making</subject><subject>Exact solutions</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Globalization</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Methods</subject><subject>Set theory</subject><subject>Sustainability</subject><subject>Transportation problem</subject><subject>Traveling salesman problem</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUMFKAzEUDKJgqb34BQFvwmqSl91tjrVaLRTtoZ6XbDbRlu1mzctK2693pUJ9l_dg5g0zQ8g1Z3cAit1jxyUXuRRwRgaC5TzhLGXn_-5LMkLcsH4AuOLZgHxOa4-Wzptow7eu6aRtg9-ttzqufUO9o0vbRP3hmx6bdYfDnr5229IGpM6H09ujjjp50Ggrugq6wdaHeJRYBl_WdotX5MLpGu3obw_J--xpNX1JFm_P8-lkkRih0pikjjnl8kqOUycNuJQDMGNUCarKbWUlVNywUpWal0ILYCAzpzNwPJNG5haG5Oao2-f46izGYuO70NvHQmS5GkupJO9Zt0eWCR4xWFe0oQ8d9gVnxW-ZxalM-AELM2gE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Juman, Z. A. M. S.</creator><creator>Mostafa, Salama A.</creator><creator>Batuwita, A. P.</creator><creator>AlArjani, Ali</creator><creator>Sharif Uddin, Md</creator><creator>Jaber, Mustafa Musa</creator><creator>Alam, Teg</creator><creator>Attia, El-Awady</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5348-502X</orcidid><orcidid>https://orcid.org/0000-0003-2703-1969</orcidid><orcidid>https://orcid.org/0000-0002-5777-9428</orcidid><orcidid>https://orcid.org/0000-0001-8314-9473</orcidid><orcidid>https://orcid.org/0000-0001-6889-2218</orcidid><orcidid>https://orcid.org/0000-0002-1538-6124</orcidid></search><sort><creationdate>20220601</creationdate><title>Close Interval Approximation of Pentagonal Fuzzy Numbers for Interval Data-Based Transportation Problems</title><author>Juman, Z. A. M. S. ; Mostafa, Salama A. ; Batuwita, A. P. ; AlArjani, Ali ; Sharif Uddin, Md ; Jaber, Mustafa Musa ; Alam, Teg ; Attia, El-Awady</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5f0f9f7d485f4c3f51330cc9b39d7ede43d1c0b9ba1b2a230346fa63f164c47e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation method</topic><topic>Centroids</topic><topic>Decision making</topic><topic>Exact solutions</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Globalization</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Methods</topic><topic>Set theory</topic><topic>Sustainability</topic><topic>Transportation problem</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juman, Z. A. M. S.</creatorcontrib><creatorcontrib>Mostafa, Salama A.</creatorcontrib><creatorcontrib>Batuwita, A. P.</creatorcontrib><creatorcontrib>AlArjani, Ali</creatorcontrib><creatorcontrib>Sharif Uddin, Md</creatorcontrib><creatorcontrib>Jaber, Mustafa Musa</creatorcontrib><creatorcontrib>Alam, Teg</creatorcontrib><creatorcontrib>Attia, El-Awady</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juman, Z. A. M. S.</au><au>Mostafa, Salama A.</au><au>Batuwita, A. P.</au><au>AlArjani, Ali</au><au>Sharif Uddin, Md</au><au>Jaber, Mustafa Musa</au><au>Alam, Teg</au><au>Attia, El-Awady</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Close Interval Approximation of Pentagonal Fuzzy Numbers for Interval Data-Based Transportation Problems</atitle><jtitle>Sustainability</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>14</volume><issue>12</issue><spage>7423</spage><pages>7423-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Due to globalization in this modern age of technology and other uncontrollable influences, transportation parameters can differ within a certain range of a given period. In this situation, a managerial position’s objective is to make appropriate decisions for the decision-makers. However, in general, the determination of an exact solution to the interval data-based transportation problem (IDTP) becomes an NP-hard problem as the number of choices within their respective ranges increases enormously when the number of suppliers and buyers increases. So, in practice, it is difficult for an exact method to find the exact solution to the IDTP in a reasonable time, specifically the large-sized problems with large interval sizes. This paper introduces solutions to the IDTP where supply, demand, and cost are all in interval numbers. One of the best interval approximations, namely the closed interval approximation of pentagonal fuzzy number, is proposed for solving the IDTP. First, in the proposed closed interval approximation method (Method-1), the pentagonal fuzzification method converts the IDTP to a fuzzy transportation problem (FTP). Subsequently, two new ranking methods based on centroid and in-center triangle concepts are presented to transfer the pentagonal fuzzy number into the corresponding crisp (non-fuzzy) value. Thereafter, the optimal solution was obtained using Vogel’s approximation method coupled with the modified distribution method. The proposed Method-1 is reported against a recent method and shows superior performance over the aforementioned and a proposed Method-2 via benchmark instances and new instances.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14127423</doi><orcidid>https://orcid.org/0000-0001-5348-502X</orcidid><orcidid>https://orcid.org/0000-0003-2703-1969</orcidid><orcidid>https://orcid.org/0000-0002-5777-9428</orcidid><orcidid>https://orcid.org/0000-0001-8314-9473</orcidid><orcidid>https://orcid.org/0000-0001-6889-2218</orcidid><orcidid>https://orcid.org/0000-0002-1538-6124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2022-06, Vol.14 (12), p.7423 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2679844941 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Approximation method Centroids Decision making Exact solutions Fuzzy sets Fuzzy systems Globalization Linear programming Mathematical programming Methods Set theory Sustainability Transportation problem Traveling salesman problem |
title | Close Interval Approximation of Pentagonal Fuzzy Numbers for Interval Data-Based Transportation Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Close%20Interval%20Approximation%20of%20Pentagonal%20Fuzzy%20Numbers%20for%20Interval%20Data-Based%20Transportation%20Problems&rft.jtitle=Sustainability&rft.au=Juman,%20Z.%20A.%20M.%20S.&rft.date=2022-06-01&rft.volume=14&rft.issue=12&rft.spage=7423&rft.pages=7423-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14127423&rft_dat=%3Cproquest_cross%3E2679844941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679844941&rft_id=info:pmid/&rfr_iscdi=true |