A Hydrodynamic–Elastic Numerical Case Study of a Solar Collector with a Double Enclosure Filled with Air and Fe3O4/Water Nanofluid

This work deals with a numerical investigation of a hydrodynamic–elastic problem within the framework of a double enclosure solar collector technological configuration. The solar collector presents two enclosures separated by an elastic absorber wall. The upper enclosure is filled with air, whereas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2022-06, Vol.10 (6), p.1195
Hauptverfasser: Nciri, Rached, Alqurashi, Faris, Ali, Chaouki, Nasri, Faouzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1195
container_title Processes
container_volume 10
creator Nciri, Rached
Alqurashi, Faris
Ali, Chaouki
Nasri, Faouzi
description This work deals with a numerical investigation of a hydrodynamic–elastic problem within the framework of a double enclosure solar collector technological configuration. The solar collector presents two enclosures separated by an elastic absorber wall. The upper enclosure is filled with air, whereas the lower one is filled with Fe3O4/water nanofluid. The mathematical model governing the thermal and flow behaviors of the considered nanofluid is elaborated. The effects of imposed hot temperatures, the Rayleigh number and air pressure on the nanofluid’s temperature contours, velocity magnitude distribution, temperature evolution, velocity magnitude evolution and Nusselt number evolutions are numerically investigated. The numerical results show and assess how the increase in the Rayleigh number affects convective heat transfer at the expense of the conductive one, as well as how much the Nusselt number and the nanofluid velocity magnitude and temperature are affected in a function of the imposed hot temperature type (uniformly or right-triangular distributed on the elastic absorber wall). Moreover, the results evaluate how increases in the air pressure applied on the elastic absorber wall affects the nanofluid’s temperature distribution.
doi_str_mv 10.3390/pr10061195
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2679827409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679827409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-70168e7b35399411726878ae0b3c6eab7fb08f7f12d473b2b3ed9e6571b4cfe13</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsNRufIIBd0Lt_CSZzLLE1grFLqq4DPOLU6aZOpMg2bnwDXxDn8RIBT2bezj34144AFxidEMpR7NDxAgVGPP8BIwIIWzKGWan__w5mKS0Q4M4pmVejMDHHK56HYPuG7F36uv9c-FFap2CD93eRKeEh5VIBm7bTvcwWCjgNngRYRW8N6oNEb659mWIb0MnvYGLRvmQumjg0g2EPq7nLkLRaLg0dJPNnkVrInwQTbC-c_oCnFnhk5n8zjF4Wi4eq9V0vbm7r-brqSJ51k4ZwkVpmKQ55TzDmJGiZKUwSFJVGCGZlai0zGKiM0YlkdRoboqcYZkpazAdg6vj3UMMr51Jbb0LXWyGlzUpGC8JyxAfqOsjpWJIKRpbH6Lbi9jXGNU_Rdd_RdNvfgZwjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679827409</pqid></control><display><type>article</type><title>A Hydrodynamic–Elastic Numerical Case Study of a Solar Collector with a Double Enclosure Filled with Air and Fe3O4/Water Nanofluid</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Nciri, Rached ; Alqurashi, Faris ; Ali, Chaouki ; Nasri, Faouzi</creator><creatorcontrib>Nciri, Rached ; Alqurashi, Faris ; Ali, Chaouki ; Nasri, Faouzi</creatorcontrib><description>This work deals with a numerical investigation of a hydrodynamic–elastic problem within the framework of a double enclosure solar collector technological configuration. The solar collector presents two enclosures separated by an elastic absorber wall. The upper enclosure is filled with air, whereas the lower one is filled with Fe3O4/water nanofluid. The mathematical model governing the thermal and flow behaviors of the considered nanofluid is elaborated. The effects of imposed hot temperatures, the Rayleigh number and air pressure on the nanofluid’s temperature contours, velocity magnitude distribution, temperature evolution, velocity magnitude evolution and Nusselt number evolutions are numerically investigated. The numerical results show and assess how the increase in the Rayleigh number affects convective heat transfer at the expense of the conductive one, as well as how much the Nusselt number and the nanofluid velocity magnitude and temperature are affected in a function of the imposed hot temperature type (uniformly or right-triangular distributed on the elastic absorber wall). Moreover, the results evaluate how increases in the air pressure applied on the elastic absorber wall affects the nanofluid’s temperature distribution.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr10061195</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Absorbers ; Air temperature ; Convective heat transfer ; Enclosures ; Entropy ; Evolution ; Fluid dynamics ; Fluid flow ; Heat conductivity ; Heat transfer ; Investigations ; Iron oxides ; Kerosene ; Mathematical models ; Nanofluids ; Nanoparticles ; Numerical analysis ; Nusselt number ; Partial differential equations ; Radiation ; Rayleigh number ; Reynolds number ; Temperature ; Temperature distribution ; Velocity</subject><ispartof>Processes, 2022-06, Vol.10 (6), p.1195</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-70168e7b35399411726878ae0b3c6eab7fb08f7f12d473b2b3ed9e6571b4cfe13</cites><orcidid>0000-0002-7207-2703 ; 0000-0002-8451-4660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nciri, Rached</creatorcontrib><creatorcontrib>Alqurashi, Faris</creatorcontrib><creatorcontrib>Ali, Chaouki</creatorcontrib><creatorcontrib>Nasri, Faouzi</creatorcontrib><title>A Hydrodynamic–Elastic Numerical Case Study of a Solar Collector with a Double Enclosure Filled with Air and Fe3O4/Water Nanofluid</title><title>Processes</title><description>This work deals with a numerical investigation of a hydrodynamic–elastic problem within the framework of a double enclosure solar collector technological configuration. The solar collector presents two enclosures separated by an elastic absorber wall. The upper enclosure is filled with air, whereas the lower one is filled with Fe3O4/water nanofluid. The mathematical model governing the thermal and flow behaviors of the considered nanofluid is elaborated. The effects of imposed hot temperatures, the Rayleigh number and air pressure on the nanofluid’s temperature contours, velocity magnitude distribution, temperature evolution, velocity magnitude evolution and Nusselt number evolutions are numerically investigated. The numerical results show and assess how the increase in the Rayleigh number affects convective heat transfer at the expense of the conductive one, as well as how much the Nusselt number and the nanofluid velocity magnitude and temperature are affected in a function of the imposed hot temperature type (uniformly or right-triangular distributed on the elastic absorber wall). Moreover, the results evaluate how increases in the air pressure applied on the elastic absorber wall affects the nanofluid’s temperature distribution.</description><subject>Absorbers</subject><subject>Air temperature</subject><subject>Convective heat transfer</subject><subject>Enclosures</subject><subject>Entropy</subject><subject>Evolution</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Investigations</subject><subject>Iron oxides</subject><subject>Kerosene</subject><subject>Mathematical models</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Numerical analysis</subject><subject>Nusselt number</subject><subject>Partial differential equations</subject><subject>Radiation</subject><subject>Rayleigh number</subject><subject>Reynolds number</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Velocity</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkM1Kw0AUhQdRsNRufIIBd0Lt_CSZzLLE1grFLqq4DPOLU6aZOpMg2bnwDXxDn8RIBT2bezj34144AFxidEMpR7NDxAgVGPP8BIwIIWzKGWan__w5mKS0Q4M4pmVejMDHHK56HYPuG7F36uv9c-FFap2CD93eRKeEh5VIBm7bTvcwWCjgNngRYRW8N6oNEb659mWIb0MnvYGLRvmQumjg0g2EPq7nLkLRaLg0dJPNnkVrInwQTbC-c_oCnFnhk5n8zjF4Wi4eq9V0vbm7r-brqSJ51k4ZwkVpmKQ55TzDmJGiZKUwSFJVGCGZlai0zGKiM0YlkdRoboqcYZkpazAdg6vj3UMMr51Jbb0LXWyGlzUpGC8JyxAfqOsjpWJIKRpbH6Lbi9jXGNU_Rdd_RdNvfgZwjA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Nciri, Rached</creator><creator>Alqurashi, Faris</creator><creator>Ali, Chaouki</creator><creator>Nasri, Faouzi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7207-2703</orcidid><orcidid>https://orcid.org/0000-0002-8451-4660</orcidid></search><sort><creationdate>20220601</creationdate><title>A Hydrodynamic–Elastic Numerical Case Study of a Solar Collector with a Double Enclosure Filled with Air and Fe3O4/Water Nanofluid</title><author>Nciri, Rached ; Alqurashi, Faris ; Ali, Chaouki ; Nasri, Faouzi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-70168e7b35399411726878ae0b3c6eab7fb08f7f12d473b2b3ed9e6571b4cfe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorbers</topic><topic>Air temperature</topic><topic>Convective heat transfer</topic><topic>Enclosures</topic><topic>Entropy</topic><topic>Evolution</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Investigations</topic><topic>Iron oxides</topic><topic>Kerosene</topic><topic>Mathematical models</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Numerical analysis</topic><topic>Nusselt number</topic><topic>Partial differential equations</topic><topic>Radiation</topic><topic>Rayleigh number</topic><topic>Reynolds number</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nciri, Rached</creatorcontrib><creatorcontrib>Alqurashi, Faris</creatorcontrib><creatorcontrib>Ali, Chaouki</creatorcontrib><creatorcontrib>Nasri, Faouzi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nciri, Rached</au><au>Alqurashi, Faris</au><au>Ali, Chaouki</au><au>Nasri, Faouzi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hydrodynamic–Elastic Numerical Case Study of a Solar Collector with a Double Enclosure Filled with Air and Fe3O4/Water Nanofluid</atitle><jtitle>Processes</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>10</volume><issue>6</issue><spage>1195</spage><pages>1195-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>This work deals with a numerical investigation of a hydrodynamic–elastic problem within the framework of a double enclosure solar collector technological configuration. The solar collector presents two enclosures separated by an elastic absorber wall. The upper enclosure is filled with air, whereas the lower one is filled with Fe3O4/water nanofluid. The mathematical model governing the thermal and flow behaviors of the considered nanofluid is elaborated. The effects of imposed hot temperatures, the Rayleigh number and air pressure on the nanofluid’s temperature contours, velocity magnitude distribution, temperature evolution, velocity magnitude evolution and Nusselt number evolutions are numerically investigated. The numerical results show and assess how the increase in the Rayleigh number affects convective heat transfer at the expense of the conductive one, as well as how much the Nusselt number and the nanofluid velocity magnitude and temperature are affected in a function of the imposed hot temperature type (uniformly or right-triangular distributed on the elastic absorber wall). Moreover, the results evaluate how increases in the air pressure applied on the elastic absorber wall affects the nanofluid’s temperature distribution.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr10061195</doi><orcidid>https://orcid.org/0000-0002-7207-2703</orcidid><orcidid>https://orcid.org/0000-0002-8451-4660</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2022-06, Vol.10 (6), p.1195
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2679827409
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Absorbers
Air temperature
Convective heat transfer
Enclosures
Entropy
Evolution
Fluid dynamics
Fluid flow
Heat conductivity
Heat transfer
Investigations
Iron oxides
Kerosene
Mathematical models
Nanofluids
Nanoparticles
Numerical analysis
Nusselt number
Partial differential equations
Radiation
Rayleigh number
Reynolds number
Temperature
Temperature distribution
Velocity
title A Hydrodynamic–Elastic Numerical Case Study of a Solar Collector with a Double Enclosure Filled with Air and Fe3O4/Water Nanofluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hydrodynamic%E2%80%93Elastic%20Numerical%20Case%20Study%20of%20a%20Solar%20Collector%20with%20a%20Double%20Enclosure%20Filled%20with%20Air%20and%20Fe3O4/Water%20Nanofluid&rft.jtitle=Processes&rft.au=Nciri,%20Rached&rft.date=2022-06-01&rft.volume=10&rft.issue=6&rft.spage=1195&rft.pages=1195-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr10061195&rft_dat=%3Cproquest_cross%3E2679827409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679827409&rft_id=info:pmid/&rfr_iscdi=true