A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance
A binary C/C brake disc (i.e., the test brake disc) was prepared with a C/C (pyrolytic carbon/resin carbon) matrix using modified natural gas as the carbon source through the isothermal chemical vapor infiltration (ICVI) process with a directed flow and the pressure impregnation carbonization (PIC)...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2022-06, Vol.12 (6), p.768 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 768 |
container_title | Coatings (Basel) |
container_volume | 12 |
creator | Zhao, Daming Cui, Hong Liu, Jilin Cheng, Hao Guo, Qiaoqin Gao, Peihu Li, Rui Li, Qiao Hou, Weiquan |
description | A binary C/C brake disc (i.e., the test brake disc) was prepared with a C/C (pyrolytic carbon/resin carbon) matrix using modified natural gas as the carbon source through the isothermal chemical vapor infiltration (ICVI) process with a directed flow and the pressure impregnation carbonization (PIC) process with liquid-phase furfural acetone resin. The microstructural, mechanical, thermal, friction and wear properties of the test brake disc were comprehensively analyzed and compared with commercial ones. The results showed that the production efficiency of the test brake disc was 36% higher than that of the commercial ones, which were manufactured through a thermal-gradient chemical vapor infiltration (TCVI) process. The favorable mechanical and thermal properties of the test brake disc were comparable to the commercial ones. While the test brake disc had a more consistently rough laminar microstructure on the worn surface of the brake disc than the commercial ones, this avoided the annular grinding grooves on the worn surface after the braking tests. In addition, the test brake disc had a stable friction coefficient with a low dispersion coefficient of 3.90%, which would improve the friction stability of C/C brake discs used in aircrafts. |
doi_str_mv | 10.3390/coatings12060768 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2679705938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722088553</galeid><sourcerecordid>A722088553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-184a522fd11833e2fd7d664b4a1ca2cf83305e86fd1c3c734dca9399980d32c43</originalsourceid><addsrcrecordid>eNpdUU1LAzEUXETBUnv3GPC8NR_7kRxrba1QUbCel_Rtsk0_kppkkf57I_Ugvnd4wzAz7zBZdkvwmDGB78HJaGwXCMUVrit-kQ0orkVeFYRe_sHX2SiELU4jCONEDLLdBC1Mt8lnWhswysIJrRRsrNu77oS08-hF2l5LiL1PH9DEePBSRzSVfu0sevByp9CjCRDQl4kb9B7leq_Q3BuIJgnelE8pB2lB3WRXWu6DGv3eYfYxn62mi3z5-vQ8nSxzYCWNOeGFLCnVLSGcMZVA3VZVsS4kAUlBJxKXildJAAxqVrQgBRNCcNwyCgUbZnfn3KN3n70Ksdm63tv0sqFVLWpcCsaTanxWdXKvGmO1i15C2lYdDDirtEn8pKYUc16WLBnw2QDeheCVbo7eHKQ_NQQ3PzU0_2tg38vXfIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679705938</pqid></control><display><type>article</type><title>A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, Daming ; Cui, Hong ; Liu, Jilin ; Cheng, Hao ; Guo, Qiaoqin ; Gao, Peihu ; Li, Rui ; Li, Qiao ; Hou, Weiquan</creator><creatorcontrib>Zhao, Daming ; Cui, Hong ; Liu, Jilin ; Cheng, Hao ; Guo, Qiaoqin ; Gao, Peihu ; Li, Rui ; Li, Qiao ; Hou, Weiquan</creatorcontrib><description>A binary C/C brake disc (i.e., the test brake disc) was prepared with a C/C (pyrolytic carbon/resin carbon) matrix using modified natural gas as the carbon source through the isothermal chemical vapor infiltration (ICVI) process with a directed flow and the pressure impregnation carbonization (PIC) process with liquid-phase furfural acetone resin. The microstructural, mechanical, thermal, friction and wear properties of the test brake disc were comprehensively analyzed and compared with commercial ones. The results showed that the production efficiency of the test brake disc was 36% higher than that of the commercial ones, which were manufactured through a thermal-gradient chemical vapor infiltration (TCVI) process. The favorable mechanical and thermal properties of the test brake disc were comparable to the commercial ones. While the test brake disc had a more consistently rough laminar microstructure on the worn surface of the brake disc than the commercial ones, this avoided the annular grinding grooves on the worn surface after the braking tests. In addition, the test brake disc had a stable friction coefficient with a low dispersion coefficient of 3.90%, which would improve the friction stability of C/C brake discs used in aircrafts.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings12060768</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aircraft ; Aircraft brakes ; Analysis ; Aviation ; Brake disks ; Carbon ; Carbon composites ; Carbon fibers ; Chemical vapor deposition ; Chemical vapor infiltration ; Coefficient of friction ; Composite materials ; Costs ; Efficiency ; Friction ; Furfural ; Grooves ; Heat ; Liquid phases ; Manufacturers ; Manufacturing ; Mechanical properties ; Methods ; Microstructure ; Natural gas ; Resins ; Thermodynamic properties</subject><ispartof>Coatings (Basel), 2022-06, Vol.12 (6), p.768</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-184a522fd11833e2fd7d664b4a1ca2cf83305e86fd1c3c734dca9399980d32c43</citedby><cites>FETCH-LOGICAL-c352t-184a522fd11833e2fd7d664b4a1ca2cf83305e86fd1c3c734dca9399980d32c43</cites><orcidid>0000-0002-5127-1746 ; 0000-0002-8618-1249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Zhao, Daming</creatorcontrib><creatorcontrib>Cui, Hong</creatorcontrib><creatorcontrib>Liu, Jilin</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Guo, Qiaoqin</creatorcontrib><creatorcontrib>Gao, Peihu</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Li, Qiao</creatorcontrib><creatorcontrib>Hou, Weiquan</creatorcontrib><title>A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance</title><title>Coatings (Basel)</title><description>A binary C/C brake disc (i.e., the test brake disc) was prepared with a C/C (pyrolytic carbon/resin carbon) matrix using modified natural gas as the carbon source through the isothermal chemical vapor infiltration (ICVI) process with a directed flow and the pressure impregnation carbonization (PIC) process with liquid-phase furfural acetone resin. The microstructural, mechanical, thermal, friction and wear properties of the test brake disc were comprehensively analyzed and compared with commercial ones. The results showed that the production efficiency of the test brake disc was 36% higher than that of the commercial ones, which were manufactured through a thermal-gradient chemical vapor infiltration (TCVI) process. The favorable mechanical and thermal properties of the test brake disc were comparable to the commercial ones. While the test brake disc had a more consistently rough laminar microstructure on the worn surface of the brake disc than the commercial ones, this avoided the annular grinding grooves on the worn surface after the braking tests. In addition, the test brake disc had a stable friction coefficient with a low dispersion coefficient of 3.90%, which would improve the friction stability of C/C brake discs used in aircrafts.</description><subject>Aircraft</subject><subject>Aircraft brakes</subject><subject>Analysis</subject><subject>Aviation</subject><subject>Brake disks</subject><subject>Carbon</subject><subject>Carbon composites</subject><subject>Carbon fibers</subject><subject>Chemical vapor deposition</subject><subject>Chemical vapor infiltration</subject><subject>Coefficient of friction</subject><subject>Composite materials</subject><subject>Costs</subject><subject>Efficiency</subject><subject>Friction</subject><subject>Furfural</subject><subject>Grooves</subject><subject>Heat</subject><subject>Liquid phases</subject><subject>Manufacturers</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Microstructure</subject><subject>Natural gas</subject><subject>Resins</subject><subject>Thermodynamic properties</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUU1LAzEUXETBUnv3GPC8NR_7kRxrba1QUbCel_Rtsk0_kppkkf57I_Ugvnd4wzAz7zBZdkvwmDGB78HJaGwXCMUVrit-kQ0orkVeFYRe_sHX2SiELU4jCONEDLLdBC1Mt8lnWhswysIJrRRsrNu77oS08-hF2l5LiL1PH9DEePBSRzSVfu0sevByp9CjCRDQl4kb9B7leq_Q3BuIJgnelE8pB2lB3WRXWu6DGv3eYfYxn62mi3z5-vQ8nSxzYCWNOeGFLCnVLSGcMZVA3VZVsS4kAUlBJxKXildJAAxqVrQgBRNCcNwyCgUbZnfn3KN3n70Ksdm63tv0sqFVLWpcCsaTanxWdXKvGmO1i15C2lYdDDirtEn8pKYUc16WLBnw2QDeheCVbo7eHKQ_NQQ3PzU0_2tg38vXfIA</recordid><startdate>20220603</startdate><enddate>20220603</enddate><creator>Zhao, Daming</creator><creator>Cui, Hong</creator><creator>Liu, Jilin</creator><creator>Cheng, Hao</creator><creator>Guo, Qiaoqin</creator><creator>Gao, Peihu</creator><creator>Li, Rui</creator><creator>Li, Qiao</creator><creator>Hou, Weiquan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5127-1746</orcidid><orcidid>https://orcid.org/0000-0002-8618-1249</orcidid></search><sort><creationdate>20220603</creationdate><title>A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance</title><author>Zhao, Daming ; Cui, Hong ; Liu, Jilin ; Cheng, Hao ; Guo, Qiaoqin ; Gao, Peihu ; Li, Rui ; Li, Qiao ; Hou, Weiquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-184a522fd11833e2fd7d664b4a1ca2cf83305e86fd1c3c734dca9399980d32c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>Aircraft brakes</topic><topic>Analysis</topic><topic>Aviation</topic><topic>Brake disks</topic><topic>Carbon</topic><topic>Carbon composites</topic><topic>Carbon fibers</topic><topic>Chemical vapor deposition</topic><topic>Chemical vapor infiltration</topic><topic>Coefficient of friction</topic><topic>Composite materials</topic><topic>Costs</topic><topic>Efficiency</topic><topic>Friction</topic><topic>Furfural</topic><topic>Grooves</topic><topic>Heat</topic><topic>Liquid phases</topic><topic>Manufacturers</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Microstructure</topic><topic>Natural gas</topic><topic>Resins</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Daming</creatorcontrib><creatorcontrib>Cui, Hong</creatorcontrib><creatorcontrib>Liu, Jilin</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Guo, Qiaoqin</creatorcontrib><creatorcontrib>Gao, Peihu</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Li, Qiao</creatorcontrib><creatorcontrib>Hou, Weiquan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Daming</au><au>Cui, Hong</au><au>Liu, Jilin</au><au>Cheng, Hao</au><au>Guo, Qiaoqin</au><au>Gao, Peihu</au><au>Li, Rui</au><au>Li, Qiao</au><au>Hou, Weiquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance</atitle><jtitle>Coatings (Basel)</jtitle><date>2022-06-03</date><risdate>2022</risdate><volume>12</volume><issue>6</issue><spage>768</spage><pages>768-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>A binary C/C brake disc (i.e., the test brake disc) was prepared with a C/C (pyrolytic carbon/resin carbon) matrix using modified natural gas as the carbon source through the isothermal chemical vapor infiltration (ICVI) process with a directed flow and the pressure impregnation carbonization (PIC) process with liquid-phase furfural acetone resin. The microstructural, mechanical, thermal, friction and wear properties of the test brake disc were comprehensively analyzed and compared with commercial ones. The results showed that the production efficiency of the test brake disc was 36% higher than that of the commercial ones, which were manufactured through a thermal-gradient chemical vapor infiltration (TCVI) process. The favorable mechanical and thermal properties of the test brake disc were comparable to the commercial ones. While the test brake disc had a more consistently rough laminar microstructure on the worn surface of the brake disc than the commercial ones, this avoided the annular grinding grooves on the worn surface after the braking tests. In addition, the test brake disc had a stable friction coefficient with a low dispersion coefficient of 3.90%, which would improve the friction stability of C/C brake discs used in aircrafts.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings12060768</doi><orcidid>https://orcid.org/0000-0002-5127-1746</orcidid><orcidid>https://orcid.org/0000-0002-8618-1249</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2022-06, Vol.12 (6), p.768 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_proquest_journals_2679705938 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Aircraft Aircraft brakes Analysis Aviation Brake disks Carbon Carbon composites Carbon fibers Chemical vapor deposition Chemical vapor infiltration Coefficient of friction Composite materials Costs Efficiency Friction Furfural Grooves Heat Liquid phases Manufacturers Manufacturing Mechanical properties Methods Microstructure Natural gas Resins Thermodynamic properties |
title | A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Efficiency%20Technology%20for%20Manufacturing%20Aircraft%20Carbon%20Brake%20Discs%20with%20Stable%20Friction%20Performance&rft.jtitle=Coatings%20(Basel)&rft.au=Zhao,%20Daming&rft.date=2022-06-03&rft.volume=12&rft.issue=6&rft.spage=768&rft.pages=768-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings12060768&rft_dat=%3Cgale_proqu%3EA722088553%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679705938&rft_id=info:pmid/&rft_galeid=A722088553&rfr_iscdi=true |