A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance

A binary C/C brake disc (i.e., the test brake disc) was prepared with a C/C (pyrolytic carbon/resin carbon) matrix using modified natural gas as the carbon source through the isothermal chemical vapor infiltration (ICVI) process with a directed flow and the pressure impregnation carbonization (PIC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2022-06, Vol.12 (6), p.768
Hauptverfasser: Zhao, Daming, Cui, Hong, Liu, Jilin, Cheng, Hao, Guo, Qiaoqin, Gao, Peihu, Li, Rui, Li, Qiao, Hou, Weiquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 768
container_title Coatings (Basel)
container_volume 12
creator Zhao, Daming
Cui, Hong
Liu, Jilin
Cheng, Hao
Guo, Qiaoqin
Gao, Peihu
Li, Rui
Li, Qiao
Hou, Weiquan
description A binary C/C brake disc (i.e., the test brake disc) was prepared with a C/C (pyrolytic carbon/resin carbon) matrix using modified natural gas as the carbon source through the isothermal chemical vapor infiltration (ICVI) process with a directed flow and the pressure impregnation carbonization (PIC) process with liquid-phase furfural acetone resin. The microstructural, mechanical, thermal, friction and wear properties of the test brake disc were comprehensively analyzed and compared with commercial ones. The results showed that the production efficiency of the test brake disc was 36% higher than that of the commercial ones, which were manufactured through a thermal-gradient chemical vapor infiltration (TCVI) process. The favorable mechanical and thermal properties of the test brake disc were comparable to the commercial ones. While the test brake disc had a more consistently rough laminar microstructure on the worn surface of the brake disc than the commercial ones, this avoided the annular grinding grooves on the worn surface after the braking tests. In addition, the test brake disc had a stable friction coefficient with a low dispersion coefficient of 3.90%, which would improve the friction stability of C/C brake discs used in aircrafts.
doi_str_mv 10.3390/coatings12060768
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2679705938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722088553</galeid><sourcerecordid>A722088553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-184a522fd11833e2fd7d664b4a1ca2cf83305e86fd1c3c734dca9399980d32c43</originalsourceid><addsrcrecordid>eNpdUU1LAzEUXETBUnv3GPC8NR_7kRxrba1QUbCel_Rtsk0_kppkkf57I_Ugvnd4wzAz7zBZdkvwmDGB78HJaGwXCMUVrit-kQ0orkVeFYRe_sHX2SiELU4jCONEDLLdBC1Mt8lnWhswysIJrRRsrNu77oS08-hF2l5LiL1PH9DEePBSRzSVfu0sevByp9CjCRDQl4kb9B7leq_Q3BuIJgnelE8pB2lB3WRXWu6DGv3eYfYxn62mi3z5-vQ8nSxzYCWNOeGFLCnVLSGcMZVA3VZVsS4kAUlBJxKXildJAAxqVrQgBRNCcNwyCgUbZnfn3KN3n70Ksdm63tv0sqFVLWpcCsaTanxWdXKvGmO1i15C2lYdDDirtEn8pKYUc16WLBnw2QDeheCVbo7eHKQ_NQQ3PzU0_2tg38vXfIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679705938</pqid></control><display><type>article</type><title>A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, Daming ; Cui, Hong ; Liu, Jilin ; Cheng, Hao ; Guo, Qiaoqin ; Gao, Peihu ; Li, Rui ; Li, Qiao ; Hou, Weiquan</creator><creatorcontrib>Zhao, Daming ; Cui, Hong ; Liu, Jilin ; Cheng, Hao ; Guo, Qiaoqin ; Gao, Peihu ; Li, Rui ; Li, Qiao ; Hou, Weiquan</creatorcontrib><description>A binary C/C brake disc (i.e., the test brake disc) was prepared with a C/C (pyrolytic carbon/resin carbon) matrix using modified natural gas as the carbon source through the isothermal chemical vapor infiltration (ICVI) process with a directed flow and the pressure impregnation carbonization (PIC) process with liquid-phase furfural acetone resin. The microstructural, mechanical, thermal, friction and wear properties of the test brake disc were comprehensively analyzed and compared with commercial ones. The results showed that the production efficiency of the test brake disc was 36% higher than that of the commercial ones, which were manufactured through a thermal-gradient chemical vapor infiltration (TCVI) process. The favorable mechanical and thermal properties of the test brake disc were comparable to the commercial ones. While the test brake disc had a more consistently rough laminar microstructure on the worn surface of the brake disc than the commercial ones, this avoided the annular grinding grooves on the worn surface after the braking tests. In addition, the test brake disc had a stable friction coefficient with a low dispersion coefficient of 3.90%, which would improve the friction stability of C/C brake discs used in aircrafts.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings12060768</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aircraft ; Aircraft brakes ; Analysis ; Aviation ; Brake disks ; Carbon ; Carbon composites ; Carbon fibers ; Chemical vapor deposition ; Chemical vapor infiltration ; Coefficient of friction ; Composite materials ; Costs ; Efficiency ; Friction ; Furfural ; Grooves ; Heat ; Liquid phases ; Manufacturers ; Manufacturing ; Mechanical properties ; Methods ; Microstructure ; Natural gas ; Resins ; Thermodynamic properties</subject><ispartof>Coatings (Basel), 2022-06, Vol.12 (6), p.768</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-184a522fd11833e2fd7d664b4a1ca2cf83305e86fd1c3c734dca9399980d32c43</citedby><cites>FETCH-LOGICAL-c352t-184a522fd11833e2fd7d664b4a1ca2cf83305e86fd1c3c734dca9399980d32c43</cites><orcidid>0000-0002-5127-1746 ; 0000-0002-8618-1249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Zhao, Daming</creatorcontrib><creatorcontrib>Cui, Hong</creatorcontrib><creatorcontrib>Liu, Jilin</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Guo, Qiaoqin</creatorcontrib><creatorcontrib>Gao, Peihu</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Li, Qiao</creatorcontrib><creatorcontrib>Hou, Weiquan</creatorcontrib><title>A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance</title><title>Coatings (Basel)</title><description>A binary C/C brake disc (i.e., the test brake disc) was prepared with a C/C (pyrolytic carbon/resin carbon) matrix using modified natural gas as the carbon source through the isothermal chemical vapor infiltration (ICVI) process with a directed flow and the pressure impregnation carbonization (PIC) process with liquid-phase furfural acetone resin. The microstructural, mechanical, thermal, friction and wear properties of the test brake disc were comprehensively analyzed and compared with commercial ones. The results showed that the production efficiency of the test brake disc was 36% higher than that of the commercial ones, which were manufactured through a thermal-gradient chemical vapor infiltration (TCVI) process. The favorable mechanical and thermal properties of the test brake disc were comparable to the commercial ones. While the test brake disc had a more consistently rough laminar microstructure on the worn surface of the brake disc than the commercial ones, this avoided the annular grinding grooves on the worn surface after the braking tests. In addition, the test brake disc had a stable friction coefficient with a low dispersion coefficient of 3.90%, which would improve the friction stability of C/C brake discs used in aircrafts.</description><subject>Aircraft</subject><subject>Aircraft brakes</subject><subject>Analysis</subject><subject>Aviation</subject><subject>Brake disks</subject><subject>Carbon</subject><subject>Carbon composites</subject><subject>Carbon fibers</subject><subject>Chemical vapor deposition</subject><subject>Chemical vapor infiltration</subject><subject>Coefficient of friction</subject><subject>Composite materials</subject><subject>Costs</subject><subject>Efficiency</subject><subject>Friction</subject><subject>Furfural</subject><subject>Grooves</subject><subject>Heat</subject><subject>Liquid phases</subject><subject>Manufacturers</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Microstructure</subject><subject>Natural gas</subject><subject>Resins</subject><subject>Thermodynamic properties</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUU1LAzEUXETBUnv3GPC8NR_7kRxrba1QUbCel_Rtsk0_kppkkf57I_Ugvnd4wzAz7zBZdkvwmDGB78HJaGwXCMUVrit-kQ0orkVeFYRe_sHX2SiELU4jCONEDLLdBC1Mt8lnWhswysIJrRRsrNu77oS08-hF2l5LiL1PH9DEePBSRzSVfu0sevByp9CjCRDQl4kb9B7leq_Q3BuIJgnelE8pB2lB3WRXWu6DGv3eYfYxn62mi3z5-vQ8nSxzYCWNOeGFLCnVLSGcMZVA3VZVsS4kAUlBJxKXildJAAxqVrQgBRNCcNwyCgUbZnfn3KN3n70Ksdm63tv0sqFVLWpcCsaTanxWdXKvGmO1i15C2lYdDDirtEn8pKYUc16WLBnw2QDeheCVbo7eHKQ_NQQ3PzU0_2tg38vXfIA</recordid><startdate>20220603</startdate><enddate>20220603</enddate><creator>Zhao, Daming</creator><creator>Cui, Hong</creator><creator>Liu, Jilin</creator><creator>Cheng, Hao</creator><creator>Guo, Qiaoqin</creator><creator>Gao, Peihu</creator><creator>Li, Rui</creator><creator>Li, Qiao</creator><creator>Hou, Weiquan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5127-1746</orcidid><orcidid>https://orcid.org/0000-0002-8618-1249</orcidid></search><sort><creationdate>20220603</creationdate><title>A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance</title><author>Zhao, Daming ; Cui, Hong ; Liu, Jilin ; Cheng, Hao ; Guo, Qiaoqin ; Gao, Peihu ; Li, Rui ; Li, Qiao ; Hou, Weiquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-184a522fd11833e2fd7d664b4a1ca2cf83305e86fd1c3c734dca9399980d32c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>Aircraft brakes</topic><topic>Analysis</topic><topic>Aviation</topic><topic>Brake disks</topic><topic>Carbon</topic><topic>Carbon composites</topic><topic>Carbon fibers</topic><topic>Chemical vapor deposition</topic><topic>Chemical vapor infiltration</topic><topic>Coefficient of friction</topic><topic>Composite materials</topic><topic>Costs</topic><topic>Efficiency</topic><topic>Friction</topic><topic>Furfural</topic><topic>Grooves</topic><topic>Heat</topic><topic>Liquid phases</topic><topic>Manufacturers</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Microstructure</topic><topic>Natural gas</topic><topic>Resins</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Daming</creatorcontrib><creatorcontrib>Cui, Hong</creatorcontrib><creatorcontrib>Liu, Jilin</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Guo, Qiaoqin</creatorcontrib><creatorcontrib>Gao, Peihu</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Li, Qiao</creatorcontrib><creatorcontrib>Hou, Weiquan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Daming</au><au>Cui, Hong</au><au>Liu, Jilin</au><au>Cheng, Hao</au><au>Guo, Qiaoqin</au><au>Gao, Peihu</au><au>Li, Rui</au><au>Li, Qiao</au><au>Hou, Weiquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance</atitle><jtitle>Coatings (Basel)</jtitle><date>2022-06-03</date><risdate>2022</risdate><volume>12</volume><issue>6</issue><spage>768</spage><pages>768-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>A binary C/C brake disc (i.e., the test brake disc) was prepared with a C/C (pyrolytic carbon/resin carbon) matrix using modified natural gas as the carbon source through the isothermal chemical vapor infiltration (ICVI) process with a directed flow and the pressure impregnation carbonization (PIC) process with liquid-phase furfural acetone resin. The microstructural, mechanical, thermal, friction and wear properties of the test brake disc were comprehensively analyzed and compared with commercial ones. The results showed that the production efficiency of the test brake disc was 36% higher than that of the commercial ones, which were manufactured through a thermal-gradient chemical vapor infiltration (TCVI) process. The favorable mechanical and thermal properties of the test brake disc were comparable to the commercial ones. While the test brake disc had a more consistently rough laminar microstructure on the worn surface of the brake disc than the commercial ones, this avoided the annular grinding grooves on the worn surface after the braking tests. In addition, the test brake disc had a stable friction coefficient with a low dispersion coefficient of 3.90%, which would improve the friction stability of C/C brake discs used in aircrafts.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings12060768</doi><orcidid>https://orcid.org/0000-0002-5127-1746</orcidid><orcidid>https://orcid.org/0000-0002-8618-1249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2022-06, Vol.12 (6), p.768
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2679705938
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Aircraft
Aircraft brakes
Analysis
Aviation
Brake disks
Carbon
Carbon composites
Carbon fibers
Chemical vapor deposition
Chemical vapor infiltration
Coefficient of friction
Composite materials
Costs
Efficiency
Friction
Furfural
Grooves
Heat
Liquid phases
Manufacturers
Manufacturing
Mechanical properties
Methods
Microstructure
Natural gas
Resins
Thermodynamic properties
title A High-Efficiency Technology for Manufacturing Aircraft Carbon Brake Discs with Stable Friction Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Efficiency%20Technology%20for%20Manufacturing%20Aircraft%20Carbon%20Brake%20Discs%20with%20Stable%20Friction%20Performance&rft.jtitle=Coatings%20(Basel)&rft.au=Zhao,%20Daming&rft.date=2022-06-03&rft.volume=12&rft.issue=6&rft.spage=768&rft.pages=768-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings12060768&rft_dat=%3Cgale_proqu%3EA722088553%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679705938&rft_id=info:pmid/&rft_galeid=A722088553&rfr_iscdi=true