Efficient Order-Optimal Preconditioners for Implicit Runge-Kutta and Runge-Kutta-Nyström Methods Applicable to a Large Class of Parabolic and Hyperbolic PDEs
We generalize previous work by Mardal, Nilssen, and Staff (2007, SIAM J. Sci. Comp. v. 29, pp. 361-375) and Rana, Howle, Long, Meek, and Milestone (2021, SIAM J. Sci. Comp. v. 43, p. 475-495) on order-optimal preconditioners for parabolic PDEs to a larger class of differential equations and methods....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Clines, Michael R Howle, Victoria E Long, Katharine R |
description | We generalize previous work by Mardal, Nilssen, and Staff (2007, SIAM J. Sci. Comp. v. 29, pp. 361-375) and Rana, Howle, Long, Meek, and Milestone (2021, SIAM J. Sci. Comp. v. 43, p. 475-495) on order-optimal preconditioners for parabolic PDEs to a larger class of differential equations and methods. The problems considered are those of the forms \(u_{t}=-\mathcal{K}u+g\) and \(u_{tt}=-\mathcal{{K}}u+g\), where the operator \(\mathcal{{K}}\) is defined by \(\mathcal{{K}}u:=-\nabla\cdot\left(\alpha\nabla u\right)+\beta u\) and the functions \(\alpha\) and \(\beta\) are restricted so that \(\alpha>0\), and \(\beta\ge0\). The methods considered are A-stable implicit Runge--Kutta methods for the parabolic equation and implicit Runge--Kutta--Nystr\"om methods for the hyperbolic equation. We prove the order optimality of a class of block preconditioners for the stage equation system arising from these problems, and furthermore we show that the LD and DU preconditioners of Rana et al. are in this class. We carry out numerical experiments on several test problems in this class -- the 2D diffusion equation, Pennes bioheat equation, the wave equation, and the Klein--Gordon equation, with both constant and variable coefficients. Our experiments show that these preconditioners, particularly the LD preconditioner, are successful at reducing the condition number of the systems as well as improving the convergence rate and solve time for GMRES applied to the stage equations. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2679493134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679493134</sourcerecordid><originalsourceid>FETCH-proquest_journals_26794931343</originalsourceid><addsrcrecordid>eNqNj81KA0EQhAdBMGjeocHzwGZno-YocSWiJot4D5NsT5wwOzN29x7yMj6GL-CLuf4cPHoqivqqoI7UqDRmoq-qsjxRY-Z9URTlxWU5nZqRequd81uPUWBFLZJeZfGdDdAQblNsvfgUkRhcIrjrchhggac-7lDf9yIWbGz_er08sNDHewePKC-pZbjOXy27CQiSwMKDpR3CPFhmSA4aS3aTBuJ7aXHISD-2uan5TB07GxjHv3qqzm_r5_lCZ0qvPbKs96mnOETr4dKsmpmJqcz_qE8ySVu1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679493134</pqid></control><display><type>article</type><title>Efficient Order-Optimal Preconditioners for Implicit Runge-Kutta and Runge-Kutta-Nyström Methods Applicable to a Large Class of Parabolic and Hyperbolic PDEs</title><source>Free E- Journals</source><creator>Clines, Michael R ; Howle, Victoria E ; Long, Katharine R</creator><creatorcontrib>Clines, Michael R ; Howle, Victoria E ; Long, Katharine R</creatorcontrib><description>We generalize previous work by Mardal, Nilssen, and Staff (2007, SIAM J. Sci. Comp. v. 29, pp. 361-375) and Rana, Howle, Long, Meek, and Milestone (2021, SIAM J. Sci. Comp. v. 43, p. 475-495) on order-optimal preconditioners for parabolic PDEs to a larger class of differential equations and methods. The problems considered are those of the forms \(u_{t}=-\mathcal{K}u+g\) and \(u_{tt}=-\mathcal{{K}}u+g\), where the operator \(\mathcal{{K}}\) is defined by \(\mathcal{{K}}u:=-\nabla\cdot\left(\alpha\nabla u\right)+\beta u\) and the functions \(\alpha\) and \(\beta\) are restricted so that \(\alpha>0\), and \(\beta\ge0\). The methods considered are A-stable implicit Runge--Kutta methods for the parabolic equation and implicit Runge--Kutta--Nystr\"om methods for the hyperbolic equation. We prove the order optimality of a class of block preconditioners for the stage equation system arising from these problems, and furthermore we show that the LD and DU preconditioners of Rana et al. are in this class. We carry out numerical experiments on several test problems in this class -- the 2D diffusion equation, Pennes bioheat equation, the wave equation, and the Klein--Gordon equation, with both constant and variable coefficients. Our experiments show that these preconditioners, particularly the LD preconditioner, are successful at reducing the condition number of the systems as well as improving the convergence rate and solve time for GMRES applied to the stage equations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Hyperbolic differential equations ; Operators (mathematics) ; Optimization ; Parabolic differential equations ; Partial differential equations ; Runge-Kutta method ; Wave equations</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Clines, Michael R</creatorcontrib><creatorcontrib>Howle, Victoria E</creatorcontrib><creatorcontrib>Long, Katharine R</creatorcontrib><title>Efficient Order-Optimal Preconditioners for Implicit Runge-Kutta and Runge-Kutta-Nyström Methods Applicable to a Large Class of Parabolic and Hyperbolic PDEs</title><title>arXiv.org</title><description>We generalize previous work by Mardal, Nilssen, and Staff (2007, SIAM J. Sci. Comp. v. 29, pp. 361-375) and Rana, Howle, Long, Meek, and Milestone (2021, SIAM J. Sci. Comp. v. 43, p. 475-495) on order-optimal preconditioners for parabolic PDEs to a larger class of differential equations and methods. The problems considered are those of the forms \(u_{t}=-\mathcal{K}u+g\) and \(u_{tt}=-\mathcal{{K}}u+g\), where the operator \(\mathcal{{K}}\) is defined by \(\mathcal{{K}}u:=-\nabla\cdot\left(\alpha\nabla u\right)+\beta u\) and the functions \(\alpha\) and \(\beta\) are restricted so that \(\alpha>0\), and \(\beta\ge0\). The methods considered are A-stable implicit Runge--Kutta methods for the parabolic equation and implicit Runge--Kutta--Nystr\"om methods for the hyperbolic equation. We prove the order optimality of a class of block preconditioners for the stage equation system arising from these problems, and furthermore we show that the LD and DU preconditioners of Rana et al. are in this class. We carry out numerical experiments on several test problems in this class -- the 2D diffusion equation, Pennes bioheat equation, the wave equation, and the Klein--Gordon equation, with both constant and variable coefficients. Our experiments show that these preconditioners, particularly the LD preconditioner, are successful at reducing the condition number of the systems as well as improving the convergence rate and solve time for GMRES applied to the stage equations.</description><subject>Hyperbolic differential equations</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Parabolic differential equations</subject><subject>Partial differential equations</subject><subject>Runge-Kutta method</subject><subject>Wave equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNj81KA0EQhAdBMGjeocHzwGZno-YocSWiJot4D5NsT5wwOzN29x7yMj6GL-CLuf4cPHoqivqqoI7UqDRmoq-qsjxRY-Z9URTlxWU5nZqRequd81uPUWBFLZJeZfGdDdAQblNsvfgUkRhcIrjrchhggac-7lDf9yIWbGz_er08sNDHewePKC-pZbjOXy27CQiSwMKDpR3CPFhmSA4aS3aTBuJ7aXHISD-2uan5TB07GxjHv3qqzm_r5_lCZ0qvPbKs96mnOETr4dKsmpmJqcz_qE8ySVu1</recordid><startdate>20220617</startdate><enddate>20220617</enddate><creator>Clines, Michael R</creator><creator>Howle, Victoria E</creator><creator>Long, Katharine R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220617</creationdate><title>Efficient Order-Optimal Preconditioners for Implicit Runge-Kutta and Runge-Kutta-Nyström Methods Applicable to a Large Class of Parabolic and Hyperbolic PDEs</title><author>Clines, Michael R ; Howle, Victoria E ; Long, Katharine R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26794931343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Hyperbolic differential equations</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Parabolic differential equations</topic><topic>Partial differential equations</topic><topic>Runge-Kutta method</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Clines, Michael R</creatorcontrib><creatorcontrib>Howle, Victoria E</creatorcontrib><creatorcontrib>Long, Katharine R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clines, Michael R</au><au>Howle, Victoria E</au><au>Long, Katharine R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Efficient Order-Optimal Preconditioners for Implicit Runge-Kutta and Runge-Kutta-Nyström Methods Applicable to a Large Class of Parabolic and Hyperbolic PDEs</atitle><jtitle>arXiv.org</jtitle><date>2022-06-17</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We generalize previous work by Mardal, Nilssen, and Staff (2007, SIAM J. Sci. Comp. v. 29, pp. 361-375) and Rana, Howle, Long, Meek, and Milestone (2021, SIAM J. Sci. Comp. v. 43, p. 475-495) on order-optimal preconditioners for parabolic PDEs to a larger class of differential equations and methods. The problems considered are those of the forms \(u_{t}=-\mathcal{K}u+g\) and \(u_{tt}=-\mathcal{{K}}u+g\), where the operator \(\mathcal{{K}}\) is defined by \(\mathcal{{K}}u:=-\nabla\cdot\left(\alpha\nabla u\right)+\beta u\) and the functions \(\alpha\) and \(\beta\) are restricted so that \(\alpha>0\), and \(\beta\ge0\). The methods considered are A-stable implicit Runge--Kutta methods for the parabolic equation and implicit Runge--Kutta--Nystr\"om methods for the hyperbolic equation. We prove the order optimality of a class of block preconditioners for the stage equation system arising from these problems, and furthermore we show that the LD and DU preconditioners of Rana et al. are in this class. We carry out numerical experiments on several test problems in this class -- the 2D diffusion equation, Pennes bioheat equation, the wave equation, and the Klein--Gordon equation, with both constant and variable coefficients. Our experiments show that these preconditioners, particularly the LD preconditioner, are successful at reducing the condition number of the systems as well as improving the convergence rate and solve time for GMRES applied to the stage equations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2679493134 |
source | Free E- Journals |
subjects | Hyperbolic differential equations Operators (mathematics) Optimization Parabolic differential equations Partial differential equations Runge-Kutta method Wave equations |
title | Efficient Order-Optimal Preconditioners for Implicit Runge-Kutta and Runge-Kutta-Nyström Methods Applicable to a Large Class of Parabolic and Hyperbolic PDEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Efficient%20Order-Optimal%20Preconditioners%20for%20Implicit%20Runge-Kutta%20and%20Runge-Kutta-Nystr%C3%B6m%20Methods%20Applicable%20to%20a%20Large%20Class%20of%20Parabolic%20and%20Hyperbolic%20PDEs&rft.jtitle=arXiv.org&rft.au=Clines,%20Michael%20R&rft.date=2022-06-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2679493134%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679493134&rft_id=info:pmid/&rfr_iscdi=true |