Two-Hop Age of Information Scheduling for Multi-UAV Assisted Mobile Edge Computing: FRL vs MADDPG
In this work, we adopt the emerging technology of mobile edge computing (MEC) in the Unmanned aerial vehicles (UAVs) for communication-computing systems, to optimize the age of information (AoI) in the network. We assume that tasks are processed jointly on UAVs and BS to enhance edge performance wit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tajik, Marjan Maleki, Mohammadreza Mokari, Nader Javan, Mohammad Reza Saeedi, Hamid Bile Peng Jorswieck, Eduard A |
description | In this work, we adopt the emerging technology of mobile edge computing (MEC) in the Unmanned aerial vehicles (UAVs) for communication-computing systems, to optimize the age of information (AoI) in the network. We assume that tasks are processed jointly on UAVs and BS to enhance edge performance with limited connectivity and computing. Using UAVs and BS jointly with MEC can reduce AoI on the network. To maintain the freshness of the tasks, we formulate the AoI minimization in two-hop communication framework, the first hop at the UAVs and the second hop at the BS. To approach the challenge, we optimize the problem using a deep reinforcement learning (DRL) framework, called federated reinforcement learning (FRL). In our network we have two types of agents with different states and actions but with the same policy. Our FRL enables us to handle the two-step AoI minimization and UAV trajectory problems. In addition, we compare our proposed algorithm, which has a centralized processing unit to update the weights, with fully decentralized multi-agent deep deterministic policy gradient (MADDPG), which enhances the agent's performance. As a result, the suggested algorithm outperforms the MADDPG by about 38\% |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2679491723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679491723</sourcerecordid><originalsourceid>FETCH-proquest_journals_26794917233</originalsourceid><addsrcrecordid>eNqNjssKwjAURIMgKOo_XHBdaNP63JU-rGBBfG2l2lRT0tzaJPr7ZuEHuBqYOQOnR4bU9z1nGVA6IBOlatd16XxBZzN_SIrTB50MWwgfDLCCraywawrNUcLx_mSlEVw-wJaQG6G5cw4vECrFlWYl5HjjgkFS2nOETWu0hdeQHnbwVpCHcbzfjEm_KoRik1-OyDRNTlHmtB2-DFP6WqPppJ2u1moVrLyF9f2P-gL8bkLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679491723</pqid></control><display><type>article</type><title>Two-Hop Age of Information Scheduling for Multi-UAV Assisted Mobile Edge Computing: FRL vs MADDPG</title><source>Free E- Journals</source><creator>Tajik, Marjan ; Maleki, Mohammadreza ; Mokari, Nader ; Javan, Mohammad Reza ; Saeedi, Hamid ; Bile Peng ; Jorswieck, Eduard A</creator><creatorcontrib>Tajik, Marjan ; Maleki, Mohammadreza ; Mokari, Nader ; Javan, Mohammad Reza ; Saeedi, Hamid ; Bile Peng ; Jorswieck, Eduard A</creatorcontrib><description>In this work, we adopt the emerging technology of mobile edge computing (MEC) in the Unmanned aerial vehicles (UAVs) for communication-computing systems, to optimize the age of information (AoI) in the network. We assume that tasks are processed jointly on UAVs and BS to enhance edge performance with limited connectivity and computing. Using UAVs and BS jointly with MEC can reduce AoI on the network. To maintain the freshness of the tasks, we formulate the AoI minimization in two-hop communication framework, the first hop at the UAVs and the second hop at the BS. To approach the challenge, we optimize the problem using a deep reinforcement learning (DRL) framework, called federated reinforcement learning (FRL). In our network we have two types of agents with different states and actions but with the same policy. Our FRL enables us to handle the two-step AoI minimization and UAV trajectory problems. In addition, we compare our proposed algorithm, which has a centralized processing unit to update the weights, with fully decentralized multi-agent deep deterministic policy gradient (MADDPG), which enhances the agent's performance. As a result, the suggested algorithm outperforms the MADDPG by about 38\%</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Deep learning ; Edge computing ; Machine learning ; Mobile computing ; Multiagent systems ; New technology ; Optimization ; Unmanned aerial vehicles</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Tajik, Marjan</creatorcontrib><creatorcontrib>Maleki, Mohammadreza</creatorcontrib><creatorcontrib>Mokari, Nader</creatorcontrib><creatorcontrib>Javan, Mohammad Reza</creatorcontrib><creatorcontrib>Saeedi, Hamid</creatorcontrib><creatorcontrib>Bile Peng</creatorcontrib><creatorcontrib>Jorswieck, Eduard A</creatorcontrib><title>Two-Hop Age of Information Scheduling for Multi-UAV Assisted Mobile Edge Computing: FRL vs MADDPG</title><title>arXiv.org</title><description>In this work, we adopt the emerging technology of mobile edge computing (MEC) in the Unmanned aerial vehicles (UAVs) for communication-computing systems, to optimize the age of information (AoI) in the network. We assume that tasks are processed jointly on UAVs and BS to enhance edge performance with limited connectivity and computing. Using UAVs and BS jointly with MEC can reduce AoI on the network. To maintain the freshness of the tasks, we formulate the AoI minimization in two-hop communication framework, the first hop at the UAVs and the second hop at the BS. To approach the challenge, we optimize the problem using a deep reinforcement learning (DRL) framework, called federated reinforcement learning (FRL). In our network we have two types of agents with different states and actions but with the same policy. Our FRL enables us to handle the two-step AoI minimization and UAV trajectory problems. In addition, we compare our proposed algorithm, which has a centralized processing unit to update the weights, with fully decentralized multi-agent deep deterministic policy gradient (MADDPG), which enhances the agent's performance. As a result, the suggested algorithm outperforms the MADDPG by about 38\%</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Edge computing</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>Multiagent systems</subject><subject>New technology</subject><subject>Optimization</subject><subject>Unmanned aerial vehicles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjssKwjAURIMgKOo_XHBdaNP63JU-rGBBfG2l2lRT0tzaJPr7ZuEHuBqYOQOnR4bU9z1nGVA6IBOlatd16XxBZzN_SIrTB50MWwgfDLCCraywawrNUcLx_mSlEVw-wJaQG6G5cw4vECrFlWYl5HjjgkFS2nOETWu0hdeQHnbwVpCHcbzfjEm_KoRik1-OyDRNTlHmtB2-DFP6WqPppJ2u1moVrLyF9f2P-gL8bkLI</recordid><startdate>20220619</startdate><enddate>20220619</enddate><creator>Tajik, Marjan</creator><creator>Maleki, Mohammadreza</creator><creator>Mokari, Nader</creator><creator>Javan, Mohammad Reza</creator><creator>Saeedi, Hamid</creator><creator>Bile Peng</creator><creator>Jorswieck, Eduard A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220619</creationdate><title>Two-Hop Age of Information Scheduling for Multi-UAV Assisted Mobile Edge Computing: FRL vs MADDPG</title><author>Tajik, Marjan ; Maleki, Mohammadreza ; Mokari, Nader ; Javan, Mohammad Reza ; Saeedi, Hamid ; Bile Peng ; Jorswieck, Eduard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26794917233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Edge computing</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>Multiagent systems</topic><topic>New technology</topic><topic>Optimization</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Tajik, Marjan</creatorcontrib><creatorcontrib>Maleki, Mohammadreza</creatorcontrib><creatorcontrib>Mokari, Nader</creatorcontrib><creatorcontrib>Javan, Mohammad Reza</creatorcontrib><creatorcontrib>Saeedi, Hamid</creatorcontrib><creatorcontrib>Bile Peng</creatorcontrib><creatorcontrib>Jorswieck, Eduard A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tajik, Marjan</au><au>Maleki, Mohammadreza</au><au>Mokari, Nader</au><au>Javan, Mohammad Reza</au><au>Saeedi, Hamid</au><au>Bile Peng</au><au>Jorswieck, Eduard A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Two-Hop Age of Information Scheduling for Multi-UAV Assisted Mobile Edge Computing: FRL vs MADDPG</atitle><jtitle>arXiv.org</jtitle><date>2022-06-19</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this work, we adopt the emerging technology of mobile edge computing (MEC) in the Unmanned aerial vehicles (UAVs) for communication-computing systems, to optimize the age of information (AoI) in the network. We assume that tasks are processed jointly on UAVs and BS to enhance edge performance with limited connectivity and computing. Using UAVs and BS jointly with MEC can reduce AoI on the network. To maintain the freshness of the tasks, we formulate the AoI minimization in two-hop communication framework, the first hop at the UAVs and the second hop at the BS. To approach the challenge, we optimize the problem using a deep reinforcement learning (DRL) framework, called federated reinforcement learning (FRL). In our network we have two types of agents with different states and actions but with the same policy. Our FRL enables us to handle the two-step AoI minimization and UAV trajectory problems. In addition, we compare our proposed algorithm, which has a centralized processing unit to update the weights, with fully decentralized multi-agent deep deterministic policy gradient (MADDPG), which enhances the agent's performance. As a result, the suggested algorithm outperforms the MADDPG by about 38\%</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2679491723 |
source | Free E- Journals |
subjects | Algorithms Deep learning Edge computing Machine learning Mobile computing Multiagent systems New technology Optimization Unmanned aerial vehicles |
title | Two-Hop Age of Information Scheduling for Multi-UAV Assisted Mobile Edge Computing: FRL vs MADDPG |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Two-Hop%20Age%20of%20Information%20Scheduling%20for%20Multi-UAV%20Assisted%20Mobile%20Edge%20Computing:%20FRL%20vs%20MADDPG&rft.jtitle=arXiv.org&rft.au=Tajik,%20Marjan&rft.date=2022-06-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2679491723%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679491723&rft_id=info:pmid/&rfr_iscdi=true |