Modeling and evaluating the effectiveness of innovation policy in the regions of Russia based on the data envelopment analysis method

The article is devoted to the development of the DEA (Data Envelopment Analysis) model to determine the effective regions of the Russian Federation from the standpoint of the implementation of innovation policy, as well as the formation of recommendations for optimizing indicators that characterize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zinenko, A. V., Ruiga, I. R., Korpacheva, L. N., Kapustina, S. V., Ovchinnikova, Iu. I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2467
creator Zinenko, A. V.
Ruiga, I. R.
Korpacheva, L. N.
Kapustina, S. V.
Ovchinnikova, Iu. I.
description The article is devoted to the development of the DEA (Data Envelopment Analysis) model to determine the effective regions of the Russian Federation from the standpoint of the implementation of innovation policy, as well as the formation of recommendations for optimizing indicators that characterize the innovation potential of the identified "ineffective" subjects. Approbation of the proposed assessment toolkit was carried out on the example of the regions of the Russian Federation on the basis of the Open Source DEA software; study period 2019; information base - open statistical data of the Federal State Statistics Service of the Russian Federation. To carry out the data analysis procedure using the Open Source DEA program, the following steps have been sequentially implemented: 1) selection of input and output parameters and preparation of a dataset; 2) the choice of the DEA model; 3) interpretation of the solution of the model. As a result, an input-oriented DEA model was selected that calculates technical efficiency assuming variable returns to scale. Subsequent ranking of subjects by the degree of efficiency was carried out in order to identify "model" regions. Specific assessments of desirable changes in inputs/outputs have been formed, which would allow bringing “ineffective” regions to the so-called efficiency frontier.
doi_str_mv 10.1063/5.0092763
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2679418276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679418276</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1312-fe354cfe1156cd57300951df80f811c77c4e0a7ba40d1629370e300715b64f2a3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yDgTpiaTCbJzFKKN6gIouAupJOTNmWajJPpQB_A9za9gDtXh_P_H-fyI3RNyYQSwe74hJAql4KdoBHlnGZSUHGKRkktsrxgX-foIsYVIXklZTlCP6_BQOP8AmtvMAy62eh-1_ZLwGAt1L0bwEOMOFjsvA9D8oPHbWhcvU3KnuxgkcQ9876J0Wk81xEMDgfb6F5j8AM0oV2D79My3Wyji3gN_TKYS3RmdRPh6ljH6PPx4WP6nM3enl6m97OspYzmmQXGi9oCpVzUhkuWvuLU2JLYktJayroAouVcF8RQkVdMEkiMpHwuCptrNkY3h7ltF743EHu1Cpsu3RJVLmRV0HIX3RjdHqhYu37_rWo7t9bdVlGidjErro4x_wcPofsDVWss-wVnT39h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2679418276</pqid></control><display><type>conference_proceeding</type><title>Modeling and evaluating the effectiveness of innovation policy in the regions of Russia based on the data envelopment analysis method</title><source>AIP Journals Complete</source><creator>Zinenko, A. V. ; Ruiga, I. R. ; Korpacheva, L. N. ; Kapustina, S. V. ; Ovchinnikova, Iu. I.</creator><contributor>Voroshilova, Anna ; Kovalev, Igor ; Stupina, Alena</contributor><creatorcontrib>Zinenko, A. V. ; Ruiga, I. R. ; Korpacheva, L. N. ; Kapustina, S. V. ; Ovchinnikova, Iu. I. ; Voroshilova, Anna ; Kovalev, Igor ; Stupina, Alena</creatorcontrib><description>The article is devoted to the development of the DEA (Data Envelopment Analysis) model to determine the effective regions of the Russian Federation from the standpoint of the implementation of innovation policy, as well as the formation of recommendations for optimizing indicators that characterize the innovation potential of the identified "ineffective" subjects. Approbation of the proposed assessment toolkit was carried out on the example of the regions of the Russian Federation on the basis of the Open Source DEA software; study period 2019; information base - open statistical data of the Federal State Statistics Service of the Russian Federation. To carry out the data analysis procedure using the Open Source DEA program, the following steps have been sequentially implemented: 1) selection of input and output parameters and preparation of a dataset; 2) the choice of the DEA model; 3) interpretation of the solution of the model. As a result, an input-oriented DEA model was selected that calculates technical efficiency assuming variable returns to scale. Subsequent ranking of subjects by the degree of efficiency was carried out in order to identify "model" regions. Specific assessments of desirable changes in inputs/outputs have been formed, which would allow bringing “ineffective” regions to the so-called efficiency frontier.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0092763</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Data analysis ; Data envelopment analysis ; Efficiency ; Innovations</subject><ispartof>AIP conference proceedings, 2022, Vol.2467 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0092763$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Voroshilova, Anna</contributor><contributor>Kovalev, Igor</contributor><contributor>Stupina, Alena</contributor><creatorcontrib>Zinenko, A. V.</creatorcontrib><creatorcontrib>Ruiga, I. R.</creatorcontrib><creatorcontrib>Korpacheva, L. N.</creatorcontrib><creatorcontrib>Kapustina, S. V.</creatorcontrib><creatorcontrib>Ovchinnikova, Iu. I.</creatorcontrib><title>Modeling and evaluating the effectiveness of innovation policy in the regions of Russia based on the data envelopment analysis method</title><title>AIP conference proceedings</title><description>The article is devoted to the development of the DEA (Data Envelopment Analysis) model to determine the effective regions of the Russian Federation from the standpoint of the implementation of innovation policy, as well as the formation of recommendations for optimizing indicators that characterize the innovation potential of the identified "ineffective" subjects. Approbation of the proposed assessment toolkit was carried out on the example of the regions of the Russian Federation on the basis of the Open Source DEA software; study period 2019; information base - open statistical data of the Federal State Statistics Service of the Russian Federation. To carry out the data analysis procedure using the Open Source DEA program, the following steps have been sequentially implemented: 1) selection of input and output parameters and preparation of a dataset; 2) the choice of the DEA model; 3) interpretation of the solution of the model. As a result, an input-oriented DEA model was selected that calculates technical efficiency assuming variable returns to scale. Subsequent ranking of subjects by the degree of efficiency was carried out in order to identify "model" regions. Specific assessments of desirable changes in inputs/outputs have been formed, which would allow bringing “ineffective” regions to the so-called efficiency frontier.</description><subject>Data analysis</subject><subject>Data envelopment analysis</subject><subject>Efficiency</subject><subject>Innovations</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL3yDgTpiaTCbJzFKKN6gIouAupJOTNmWajJPpQB_A9za9gDtXh_P_H-fyI3RNyYQSwe74hJAql4KdoBHlnGZSUHGKRkktsrxgX-foIsYVIXklZTlCP6_BQOP8AmtvMAy62eh-1_ZLwGAt1L0bwEOMOFjsvA9D8oPHbWhcvU3KnuxgkcQ9876J0Wk81xEMDgfb6F5j8AM0oV2D79My3Wyji3gN_TKYS3RmdRPh6ljH6PPx4WP6nM3enl6m97OspYzmmQXGi9oCpVzUhkuWvuLU2JLYktJayroAouVcF8RQkVdMEkiMpHwuCptrNkY3h7ltF743EHu1Cpsu3RJVLmRV0HIX3RjdHqhYu37_rWo7t9bdVlGidjErro4x_wcPofsDVWss-wVnT39h</recordid><startdate>20220622</startdate><enddate>20220622</enddate><creator>Zinenko, A. V.</creator><creator>Ruiga, I. R.</creator><creator>Korpacheva, L. N.</creator><creator>Kapustina, S. V.</creator><creator>Ovchinnikova, Iu. I.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220622</creationdate><title>Modeling and evaluating the effectiveness of innovation policy in the regions of Russia based on the data envelopment analysis method</title><author>Zinenko, A. V. ; Ruiga, I. R. ; Korpacheva, L. N. ; Kapustina, S. V. ; Ovchinnikova, Iu. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1312-fe354cfe1156cd57300951df80f811c77c4e0a7ba40d1629370e300715b64f2a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data analysis</topic><topic>Data envelopment analysis</topic><topic>Efficiency</topic><topic>Innovations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zinenko, A. V.</creatorcontrib><creatorcontrib>Ruiga, I. R.</creatorcontrib><creatorcontrib>Korpacheva, L. N.</creatorcontrib><creatorcontrib>Kapustina, S. V.</creatorcontrib><creatorcontrib>Ovchinnikova, Iu. I.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zinenko, A. V.</au><au>Ruiga, I. R.</au><au>Korpacheva, L. N.</au><au>Kapustina, S. V.</au><au>Ovchinnikova, Iu. I.</au><au>Voroshilova, Anna</au><au>Kovalev, Igor</au><au>Stupina, Alena</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling and evaluating the effectiveness of innovation policy in the regions of Russia based on the data envelopment analysis method</atitle><btitle>AIP conference proceedings</btitle><date>2022-06-22</date><risdate>2022</risdate><volume>2467</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The article is devoted to the development of the DEA (Data Envelopment Analysis) model to determine the effective regions of the Russian Federation from the standpoint of the implementation of innovation policy, as well as the formation of recommendations for optimizing indicators that characterize the innovation potential of the identified "ineffective" subjects. Approbation of the proposed assessment toolkit was carried out on the example of the regions of the Russian Federation on the basis of the Open Source DEA software; study period 2019; information base - open statistical data of the Federal State Statistics Service of the Russian Federation. To carry out the data analysis procedure using the Open Source DEA program, the following steps have been sequentially implemented: 1) selection of input and output parameters and preparation of a dataset; 2) the choice of the DEA model; 3) interpretation of the solution of the model. As a result, an input-oriented DEA model was selected that calculates technical efficiency assuming variable returns to scale. Subsequent ranking of subjects by the degree of efficiency was carried out in order to identify "model" regions. Specific assessments of desirable changes in inputs/outputs have been formed, which would allow bringing “ineffective” regions to the so-called efficiency frontier.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0092763</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2467 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2679418276
source AIP Journals Complete
subjects Data analysis
Data envelopment analysis
Efficiency
Innovations
title Modeling and evaluating the effectiveness of innovation policy in the regions of Russia based on the data envelopment analysis method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20and%20evaluating%20the%20effectiveness%20of%20innovation%20policy%20in%20the%20regions%20of%20Russia%20based%20on%20the%20data%20envelopment%20analysis%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Zinenko,%20A.%20V.&rft.date=2022-06-22&rft.volume=2467&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0092763&rft_dat=%3Cproquest_scita%3E2679418276%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679418276&rft_id=info:pmid/&rfr_iscdi=true