Learning to Operate an Electric Vehicle Charging Station Considering Vehicle-Grid Integration

The rapid adoption of electric vehicles (EVs) calls for the widespread installation of EV charging stations. To maximize the profitability of charging stations, intelligent controllers that provide both charging and electric grid services are in great need. However, it is challenging to determine th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2022-07, Vol.13 (4), p.3038-3048
Hauptverfasser: Ye, Zuzhao, Gao, Yuanqi, Yu, Nanpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3048
container_issue 4
container_start_page 3038
container_title IEEE transactions on smart grid
container_volume 13
creator Ye, Zuzhao
Gao, Yuanqi
Yu, Nanpeng
description The rapid adoption of electric vehicles (EVs) calls for the widespread installation of EV charging stations. To maximize the profitability of charging stations, intelligent controllers that provide both charging and electric grid services are in great need. However, it is challenging to determine the optimal charging schedule due to the uncertain arrival time and charging demands of EVs. In this paper, we propose a novel centralized allocation and decentralized execution (CADE) reinforcement learning (RL) framework to maximize the charging station's profit. In the centralized allocation process, EVs are allocated to either the waiting or charging spots. In the decentralized execution process, each charger makes its own charging/discharging decision while learning the action-value functions from a shared replay memory. This CADE framework significantly improves the scalability and sample efficiency of the RL algorithm. Numerical results show that the proposed CADE framework is both computationally efficient and scalable, and significantly outperforms the baseline model predictive control (MPC). We also provide an in-depth analysis of the learned action-value function to explain the inner working of the reinforcement learning agent.
doi_str_mv 10.1109/TSG.2022.3165479
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2679393985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9750198</ieee_id><sourcerecordid>2679393985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-786ed0dbe7eff41ec8550da8adffc5af97c8cebfa68c48f6beba84877cd0c653</originalsourceid><addsrcrecordid>eNo9kE1rAjEQQENpoWK9F3oJ9Lw22Wy-jmWxKggelN5KyGYnGrG7NhsP_ffdreLMYYbhzQw8hJ4pmVJK9Nt2M5_mJM-njApeSH2HRlQXOmNE0Ptbz9kjmnTdgfTBGBO5HqGvFdjYhGaHU4vXJ4g2AbYNnh3BpRgc_oR9cEfA5d7G3cBtkk2hbXDZNl2oIQ6zK5TNY6jxskmwi__QE3rw9tjB5FrHaPsx25aLbLWeL8v3VeZyTVMmlYCa1BVI8L6g4BTnpLbK1t47br2WTjmovBXKFcqLCiqrCiWlq4kTnI3R6-XsKbY_Z-iSObTn2PQfTS6kZn2qgSIXysW26yJ4c4rh28ZfQ4kZNJpeoxk0mqvGfuXlshIA4IZryQnViv0BLzRv7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679393985</pqid></control><display><type>article</type><title>Learning to Operate an Electric Vehicle Charging Station Considering Vehicle-Grid Integration</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Zuzhao ; Gao, Yuanqi ; Yu, Nanpeng</creator><creatorcontrib>Ye, Zuzhao ; Gao, Yuanqi ; Yu, Nanpeng</creatorcontrib><description>The rapid adoption of electric vehicles (EVs) calls for the widespread installation of EV charging stations. To maximize the profitability of charging stations, intelligent controllers that provide both charging and electric grid services are in great need. However, it is challenging to determine the optimal charging schedule due to the uncertain arrival time and charging demands of EVs. In this paper, we propose a novel centralized allocation and decentralized execution (CADE) reinforcement learning (RL) framework to maximize the charging station's profit. In the centralized allocation process, EVs are allocated to either the waiting or charging spots. In the decentralized execution process, each charger makes its own charging/discharging decision while learning the action-value functions from a shared replay memory. This CADE framework significantly improves the scalability and sample efficiency of the RL algorithm. Numerical results show that the proposed CADE framework is both computationally efficient and scalable, and significantly outperforms the baseline model predictive control (MPC). We also provide an in-depth analysis of the learned action-value function to explain the inner working of the reinforcement learning agent.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2022.3165479</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Batteries ; charging station ; Charging stations ; Electric vehicle ; Electric vehicle charging ; Electric vehicles ; Energy states ; Learning ; Optimization ; Prediction algorithms ; Predictive control ; Profitability ; reinforcement learning ; Schedules ; vehicle-grid integration ; Vehicle-to-grid</subject><ispartof>IEEE transactions on smart grid, 2022-07, Vol.13 (4), p.3038-3048</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-786ed0dbe7eff41ec8550da8adffc5af97c8cebfa68c48f6beba84877cd0c653</citedby><cites>FETCH-LOGICAL-c291t-786ed0dbe7eff41ec8550da8adffc5af97c8cebfa68c48f6beba84877cd0c653</cites><orcidid>0000-0003-4078-6143 ; 0000-0002-0428-662X ; 0000-0001-5086-5465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9750198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9750198$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Zuzhao</creatorcontrib><creatorcontrib>Gao, Yuanqi</creatorcontrib><creatorcontrib>Yu, Nanpeng</creatorcontrib><title>Learning to Operate an Electric Vehicle Charging Station Considering Vehicle-Grid Integration</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>The rapid adoption of electric vehicles (EVs) calls for the widespread installation of EV charging stations. To maximize the profitability of charging stations, intelligent controllers that provide both charging and electric grid services are in great need. However, it is challenging to determine the optimal charging schedule due to the uncertain arrival time and charging demands of EVs. In this paper, we propose a novel centralized allocation and decentralized execution (CADE) reinforcement learning (RL) framework to maximize the charging station's profit. In the centralized allocation process, EVs are allocated to either the waiting or charging spots. In the decentralized execution process, each charger makes its own charging/discharging decision while learning the action-value functions from a shared replay memory. This CADE framework significantly improves the scalability and sample efficiency of the RL algorithm. Numerical results show that the proposed CADE framework is both computationally efficient and scalable, and significantly outperforms the baseline model predictive control (MPC). We also provide an in-depth analysis of the learned action-value function to explain the inner working of the reinforcement learning agent.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>charging station</subject><subject>Charging stations</subject><subject>Electric vehicle</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Energy states</subject><subject>Learning</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Predictive control</subject><subject>Profitability</subject><subject>reinforcement learning</subject><subject>Schedules</subject><subject>vehicle-grid integration</subject><subject>Vehicle-to-grid</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rAjEQQENpoWK9F3oJ9Lw22Wy-jmWxKggelN5KyGYnGrG7NhsP_ffdreLMYYbhzQw8hJ4pmVJK9Nt2M5_mJM-njApeSH2HRlQXOmNE0Ptbz9kjmnTdgfTBGBO5HqGvFdjYhGaHU4vXJ4g2AbYNnh3BpRgc_oR9cEfA5d7G3cBtkk2hbXDZNl2oIQ6zK5TNY6jxskmwi__QE3rw9tjB5FrHaPsx25aLbLWeL8v3VeZyTVMmlYCa1BVI8L6g4BTnpLbK1t47br2WTjmovBXKFcqLCiqrCiWlq4kTnI3R6-XsKbY_Z-iSObTn2PQfTS6kZn2qgSIXysW26yJ4c4rh28ZfQ4kZNJpeoxk0mqvGfuXlshIA4IZryQnViv0BLzRv7A</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ye, Zuzhao</creator><creator>Gao, Yuanqi</creator><creator>Yu, Nanpeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4078-6143</orcidid><orcidid>https://orcid.org/0000-0002-0428-662X</orcidid><orcidid>https://orcid.org/0000-0001-5086-5465</orcidid></search><sort><creationdate>20220701</creationdate><title>Learning to Operate an Electric Vehicle Charging Station Considering Vehicle-Grid Integration</title><author>Ye, Zuzhao ; Gao, Yuanqi ; Yu, Nanpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-786ed0dbe7eff41ec8550da8adffc5af97c8cebfa68c48f6beba84877cd0c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>charging station</topic><topic>Charging stations</topic><topic>Electric vehicle</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Energy states</topic><topic>Learning</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Predictive control</topic><topic>Profitability</topic><topic>reinforcement learning</topic><topic>Schedules</topic><topic>vehicle-grid integration</topic><topic>Vehicle-to-grid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Zuzhao</creatorcontrib><creatorcontrib>Gao, Yuanqi</creatorcontrib><creatorcontrib>Yu, Nanpeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Zuzhao</au><au>Gao, Yuanqi</au><au>Yu, Nanpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to Operate an Electric Vehicle Charging Station Considering Vehicle-Grid Integration</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>13</volume><issue>4</issue><spage>3038</spage><epage>3048</epage><pages>3038-3048</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>The rapid adoption of electric vehicles (EVs) calls for the widespread installation of EV charging stations. To maximize the profitability of charging stations, intelligent controllers that provide both charging and electric grid services are in great need. However, it is challenging to determine the optimal charging schedule due to the uncertain arrival time and charging demands of EVs. In this paper, we propose a novel centralized allocation and decentralized execution (CADE) reinforcement learning (RL) framework to maximize the charging station's profit. In the centralized allocation process, EVs are allocated to either the waiting or charging spots. In the decentralized execution process, each charger makes its own charging/discharging decision while learning the action-value functions from a shared replay memory. This CADE framework significantly improves the scalability and sample efficiency of the RL algorithm. Numerical results show that the proposed CADE framework is both computationally efficient and scalable, and significantly outperforms the baseline model predictive control (MPC). We also provide an in-depth analysis of the learned action-value function to explain the inner working of the reinforcement learning agent.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2022.3165479</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4078-6143</orcidid><orcidid>https://orcid.org/0000-0002-0428-662X</orcidid><orcidid>https://orcid.org/0000-0001-5086-5465</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2022-07, Vol.13 (4), p.3038-3048
issn 1949-3053
1949-3061
language eng
recordid cdi_proquest_journals_2679393985
source IEEE Electronic Library (IEL)
subjects Algorithms
Batteries
charging station
Charging stations
Electric vehicle
Electric vehicle charging
Electric vehicles
Energy states
Learning
Optimization
Prediction algorithms
Predictive control
Profitability
reinforcement learning
Schedules
vehicle-grid integration
Vehicle-to-grid
title Learning to Operate an Electric Vehicle Charging Station Considering Vehicle-Grid Integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20Operate%20an%20Electric%20Vehicle%20Charging%20Station%20Considering%20Vehicle-Grid%20Integration&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Ye,%20Zuzhao&rft.date=2022-07-01&rft.volume=13&rft.issue=4&rft.spage=3038&rft.epage=3048&rft.pages=3038-3048&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2022.3165479&rft_dat=%3Cproquest_RIE%3E2679393985%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679393985&rft_id=info:pmid/&rft_ieee_id=9750198&rfr_iscdi=true