400-V Amorphous IGZO Thin-Film Transistors With Drift Region Doped by Hydrogen
The 400-V amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with the drift region doped by hydrogen near the drain side are demonstrated in this work. The breakdown voltage ( {V}_{\text {BD}} ) increases with the length of the drift region ( {L}_{\text {drift}} ), and the max...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2022-07, Vol.69 (7), p.3732-3736 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3736 |
---|---|
container_issue | 7 |
container_start_page | 3732 |
container_title | IEEE transactions on electron devices |
container_volume | 69 |
creator | Yang, Guangan Tian, Hao Yu, Zuoxu Huang, Tingrui Xu, Yong Sun, Huabin Sun, Weifeng Wu, Wangran |
description | The 400-V amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with the drift region doped by hydrogen near the drain side are demonstrated in this work. The breakdown voltage ( {V}_{\text {BD}} ) increases with the length of the drift region ( {L}_{\text {drift}} ), and the maximum {V}_{\text {BD}} of 406 V is achieved at the {L}_{\text {drift}} of 5~\mu \text{m} for the a-IGZO TFT. The drift region endures the high-operating voltage to enhance the {V}_{\text {BD}} , determined by the emission microscope (EMMI) detection and simulation. The output current of the high-voltage (HV) device with the drift region increases with the increasing doping-hydrogen flow rate. The X-ray photoelectron spectroscopy (XPS) proves that the doped-hydrogen improves the carrier concentration in the a-IGZO film. Therefore, the hydrogen doping region takes a low proportion of the whole ON-resistance ( {R}_{ \mathrm{\scriptscriptstyle ON}} ). The proposed 400-V a-IGZO TFTs exhibit the excellent {R}_{ \mathrm{\scriptscriptstyle ON}} versus {V}_{\text {BD}} tradeoff relationship. The HV device with a drift region doped by hydrogen exhibits a negative shift of the threshold voltage ( {V}_{\text {th}} ) under the high bias stress (at {V}_{d} =100 V and {V}_{g} =5 V) because of the channel hot-carrier effect. |
doi_str_mv | 10.1109/TED.2022.3178056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2679392331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9790865</ieee_id><sourcerecordid>2679392331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-7f4b34dc684ad78c5378272da82f4170f34df810a21712c05d34286aefc30f43</originalsourceid><addsrcrecordid>eNo9kE1rAjEQhkNpodb2Xugl0PPayccm2aP4DVKhLC30EtbdRCO62SbrwX_vitLT8DLPOwMPQq8EBoRA9pFPxgMKlA4YkQpScYd6JE1lkgku7lEPgKgkY4o9oqcYd10UnNMe-uQAyTceHnxotv4Y8WL2u8L51tXJ1O0POA9FHV1sfYj4x7VbPA7OtvjLbJyv8dg3psLrE56fquA3pn5GD7bYR_Nym32UTyf5aJ4sV7PFaLhMSkpJm0jL14xXpVC8qKQqUyYVlbQqFLWcSLDd0ioCBSWS0BLSinGqRGFsycBy1kfv17NN8H9HE1u988dQdx81FTJjGWWMdBRcqTL4GIOxugnuUISTJqAv0nQnTV-k6Zu0rvJ2rThjzD-eyQyUSNkZhytlZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679392331</pqid></control><display><type>article</type><title>400-V Amorphous IGZO Thin-Film Transistors With Drift Region Doped by Hydrogen</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Guangan ; Tian, Hao ; Yu, Zuoxu ; Huang, Tingrui ; Xu, Yong ; Sun, Huabin ; Sun, Weifeng ; Wu, Wangran</creator><creatorcontrib>Yang, Guangan ; Tian, Hao ; Yu, Zuoxu ; Huang, Tingrui ; Xu, Yong ; Sun, Huabin ; Sun, Weifeng ; Wu, Wangran</creatorcontrib><description><![CDATA[The 400-V amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with the drift region doped by hydrogen near the drain side are demonstrated in this work. The breakdown voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {BD}} </tex-math></inline-formula>) increases with the length of the drift region (<inline-formula> <tex-math notation="LaTeX">{L}_{\text {drift}} </tex-math></inline-formula>), and the maximum <inline-formula> <tex-math notation="LaTeX">{V}_{\text {BD}} </tex-math></inline-formula> of 406 V is achieved at the <inline-formula> <tex-math notation="LaTeX">{L}_{\text {drift}} </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">5~\mu \text{m} </tex-math></inline-formula> for the a-IGZO TFT. The drift region endures the high-operating voltage to enhance the <inline-formula> <tex-math notation="LaTeX">{V}_{\text {BD}} </tex-math></inline-formula>, determined by the emission microscope (EMMI) detection and simulation. The output current of the high-voltage (HV) device with the drift region increases with the increasing doping-hydrogen flow rate. The X-ray photoelectron spectroscopy (XPS) proves that the doped-hydrogen improves the carrier concentration in the a-IGZO film. Therefore, the hydrogen doping region takes a low proportion of the whole ON-resistance (<inline-formula> <tex-math notation="LaTeX">{R}_{ \mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula>). The proposed 400-V a-IGZO TFTs exhibit the excellent <inline-formula> <tex-math notation="LaTeX">{R}_{ \mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula> versus <inline-formula> <tex-math notation="LaTeX">{V}_{\text {BD}} </tex-math></inline-formula> tradeoff relationship. The HV device with a drift region doped by hydrogen exhibits a negative shift of the threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>) under the high bias stress (at <inline-formula> <tex-math notation="LaTeX">{V}_{d} =100 </tex-math></inline-formula> V and <inline-formula> <tex-math notation="LaTeX">{V}_{g} =5 </tex-math></inline-formula> V) because of the channel hot-carrier effect.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3178056</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amorphous indium gallium zinc oxide (a-IGZO) ; Carrier density ; Doping ; Drift ; drift region ; Flow velocity ; Gallium ; high-voltage (HV) ; Hydrogen ; hydrogen doping ; Indium gallium zinc oxide ; Logic gates ; Performance evaluation ; Photoelectrons ; Resistance ; Semiconductor devices ; Sun ; Thin film transistors ; thin-film transistors (TFTs) ; Threshold voltage ; Transistors ; X ray photoelectron spectroscopy ; Zinc oxide</subject><ispartof>IEEE transactions on electron devices, 2022-07, Vol.69 (7), p.3732-3736</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-7f4b34dc684ad78c5378272da82f4170f34df810a21712c05d34286aefc30f43</citedby><cites>FETCH-LOGICAL-c221t-7f4b34dc684ad78c5378272da82f4170f34df810a21712c05d34286aefc30f43</cites><orcidid>0000-0002-3289-8877 ; 0000-0002-8465-7151 ; 0000-0001-5806-9754 ; 0000-0001-9572-7322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9790865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9790865$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Guangan</creatorcontrib><creatorcontrib>Tian, Hao</creatorcontrib><creatorcontrib>Yu, Zuoxu</creatorcontrib><creatorcontrib>Huang, Tingrui</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Sun, Huabin</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><creatorcontrib>Wu, Wangran</creatorcontrib><title>400-V Amorphous IGZO Thin-Film Transistors With Drift Region Doped by Hydrogen</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[The 400-V amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with the drift region doped by hydrogen near the drain side are demonstrated in this work. The breakdown voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {BD}} </tex-math></inline-formula>) increases with the length of the drift region (<inline-formula> <tex-math notation="LaTeX">{L}_{\text {drift}} </tex-math></inline-formula>), and the maximum <inline-formula> <tex-math notation="LaTeX">{V}_{\text {BD}} </tex-math></inline-formula> of 406 V is achieved at the <inline-formula> <tex-math notation="LaTeX">{L}_{\text {drift}} </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">5~\mu \text{m} </tex-math></inline-formula> for the a-IGZO TFT. The drift region endures the high-operating voltage to enhance the <inline-formula> <tex-math notation="LaTeX">{V}_{\text {BD}} </tex-math></inline-formula>, determined by the emission microscope (EMMI) detection and simulation. The output current of the high-voltage (HV) device with the drift region increases with the increasing doping-hydrogen flow rate. The X-ray photoelectron spectroscopy (XPS) proves that the doped-hydrogen improves the carrier concentration in the a-IGZO film. Therefore, the hydrogen doping region takes a low proportion of the whole ON-resistance (<inline-formula> <tex-math notation="LaTeX">{R}_{ \mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula>). The proposed 400-V a-IGZO TFTs exhibit the excellent <inline-formula> <tex-math notation="LaTeX">{R}_{ \mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula> versus <inline-formula> <tex-math notation="LaTeX">{V}_{\text {BD}} </tex-math></inline-formula> tradeoff relationship. The HV device with a drift region doped by hydrogen exhibits a negative shift of the threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>) under the high bias stress (at <inline-formula> <tex-math notation="LaTeX">{V}_{d} =100 </tex-math></inline-formula> V and <inline-formula> <tex-math notation="LaTeX">{V}_{g} =5 </tex-math></inline-formula> V) because of the channel hot-carrier effect.]]></description><subject>Amorphous indium gallium zinc oxide (a-IGZO)</subject><subject>Carrier density</subject><subject>Doping</subject><subject>Drift</subject><subject>drift region</subject><subject>Flow velocity</subject><subject>Gallium</subject><subject>high-voltage (HV)</subject><subject>Hydrogen</subject><subject>hydrogen doping</subject><subject>Indium gallium zinc oxide</subject><subject>Logic gates</subject><subject>Performance evaluation</subject><subject>Photoelectrons</subject><subject>Resistance</subject><subject>Semiconductor devices</subject><subject>Sun</subject><subject>Thin film transistors</subject><subject>thin-film transistors (TFTs)</subject><subject>Threshold voltage</subject><subject>Transistors</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zinc oxide</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rAjEQhkNpodb2Xugl0PPayccm2aP4DVKhLC30EtbdRCO62SbrwX_vitLT8DLPOwMPQq8EBoRA9pFPxgMKlA4YkQpScYd6JE1lkgku7lEPgKgkY4o9oqcYd10UnNMe-uQAyTceHnxotv4Y8WL2u8L51tXJ1O0POA9FHV1sfYj4x7VbPA7OtvjLbJyv8dg3psLrE56fquA3pn5GD7bYR_Nym32UTyf5aJ4sV7PFaLhMSkpJm0jL14xXpVC8qKQqUyYVlbQqFLWcSLDd0ioCBSWS0BLSinGqRGFsycBy1kfv17NN8H9HE1u988dQdx81FTJjGWWMdBRcqTL4GIOxugnuUISTJqAv0nQnTV-k6Zu0rvJ2rThjzD-eyQyUSNkZhytlZg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Yang, Guangan</creator><creator>Tian, Hao</creator><creator>Yu, Zuoxu</creator><creator>Huang, Tingrui</creator><creator>Xu, Yong</creator><creator>Sun, Huabin</creator><creator>Sun, Weifeng</creator><creator>Wu, Wangran</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3289-8877</orcidid><orcidid>https://orcid.org/0000-0002-8465-7151</orcidid><orcidid>https://orcid.org/0000-0001-5806-9754</orcidid><orcidid>https://orcid.org/0000-0001-9572-7322</orcidid></search><sort><creationdate>20220701</creationdate><title>400-V Amorphous IGZO Thin-Film Transistors With Drift Region Doped by Hydrogen</title><author>Yang, Guangan ; Tian, Hao ; Yu, Zuoxu ; Huang, Tingrui ; Xu, Yong ; Sun, Huabin ; Sun, Weifeng ; Wu, Wangran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-7f4b34dc684ad78c5378272da82f4170f34df810a21712c05d34286aefc30f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amorphous indium gallium zinc oxide (a-IGZO)</topic><topic>Carrier density</topic><topic>Doping</topic><topic>Drift</topic><topic>drift region</topic><topic>Flow velocity</topic><topic>Gallium</topic><topic>high-voltage (HV)</topic><topic>Hydrogen</topic><topic>hydrogen doping</topic><topic>Indium gallium zinc oxide</topic><topic>Logic gates</topic><topic>Performance evaluation</topic><topic>Photoelectrons</topic><topic>Resistance</topic><topic>Semiconductor devices</topic><topic>Sun</topic><topic>Thin film transistors</topic><topic>thin-film transistors (TFTs)</topic><topic>Threshold voltage</topic><topic>Transistors</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Guangan</creatorcontrib><creatorcontrib>Tian, Hao</creatorcontrib><creatorcontrib>Yu, Zuoxu</creatorcontrib><creatorcontrib>Huang, Tingrui</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Sun, Huabin</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><creatorcontrib>Wu, Wangran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Guangan</au><au>Tian, Hao</au><au>Yu, Zuoxu</au><au>Huang, Tingrui</au><au>Xu, Yong</au><au>Sun, Huabin</au><au>Sun, Weifeng</au><au>Wu, Wangran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>400-V Amorphous IGZO Thin-Film Transistors With Drift Region Doped by Hydrogen</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>69</volume><issue>7</issue><spage>3732</spage><epage>3736</epage><pages>3732-3736</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[The 400-V amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with the drift region doped by hydrogen near the drain side are demonstrated in this work. The breakdown voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {BD}} </tex-math></inline-formula>) increases with the length of the drift region (<inline-formula> <tex-math notation="LaTeX">{L}_{\text {drift}} </tex-math></inline-formula>), and the maximum <inline-formula> <tex-math notation="LaTeX">{V}_{\text {BD}} </tex-math></inline-formula> of 406 V is achieved at the <inline-formula> <tex-math notation="LaTeX">{L}_{\text {drift}} </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">5~\mu \text{m} </tex-math></inline-formula> for the a-IGZO TFT. The drift region endures the high-operating voltage to enhance the <inline-formula> <tex-math notation="LaTeX">{V}_{\text {BD}} </tex-math></inline-formula>, determined by the emission microscope (EMMI) detection and simulation. The output current of the high-voltage (HV) device with the drift region increases with the increasing doping-hydrogen flow rate. The X-ray photoelectron spectroscopy (XPS) proves that the doped-hydrogen improves the carrier concentration in the a-IGZO film. Therefore, the hydrogen doping region takes a low proportion of the whole ON-resistance (<inline-formula> <tex-math notation="LaTeX">{R}_{ \mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula>). The proposed 400-V a-IGZO TFTs exhibit the excellent <inline-formula> <tex-math notation="LaTeX">{R}_{ \mathrm{\scriptscriptstyle ON}} </tex-math></inline-formula> versus <inline-formula> <tex-math notation="LaTeX">{V}_{\text {BD}} </tex-math></inline-formula> tradeoff relationship. The HV device with a drift region doped by hydrogen exhibits a negative shift of the threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>) under the high bias stress (at <inline-formula> <tex-math notation="LaTeX">{V}_{d} =100 </tex-math></inline-formula> V and <inline-formula> <tex-math notation="LaTeX">{V}_{g} =5 </tex-math></inline-formula> V) because of the channel hot-carrier effect.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3178056</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3289-8877</orcidid><orcidid>https://orcid.org/0000-0002-8465-7151</orcidid><orcidid>https://orcid.org/0000-0001-5806-9754</orcidid><orcidid>https://orcid.org/0000-0001-9572-7322</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2022-07, Vol.69 (7), p.3732-3736 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2679392331 |
source | IEEE Electronic Library (IEL) |
subjects | Amorphous indium gallium zinc oxide (a-IGZO) Carrier density Doping Drift drift region Flow velocity Gallium high-voltage (HV) Hydrogen hydrogen doping Indium gallium zinc oxide Logic gates Performance evaluation Photoelectrons Resistance Semiconductor devices Sun Thin film transistors thin-film transistors (TFTs) Threshold voltage Transistors X ray photoelectron spectroscopy Zinc oxide |
title | 400-V Amorphous IGZO Thin-Film Transistors With Drift Region Doped by Hydrogen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=400-V%20Amorphous%20IGZO%20Thin-Film%20Transistors%20With%20Drift%20Region%20Doped%20by%20Hydrogen&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Yang,%20Guangan&rft.date=2022-07-01&rft.volume=69&rft.issue=7&rft.spage=3732&rft.epage=3736&rft.pages=3732-3736&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3178056&rft_dat=%3Cproquest_RIE%3E2679392331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679392331&rft_id=info:pmid/&rft_ieee_id=9790865&rfr_iscdi=true |