Synthesis and in silico evaluation of novel uridyl sulfamoylbenzoate derivatives as potential anticancer agents targeting M1 subunit of human ribonucleotide reductase (hRRM1)

Ribonucleotide reductase (RNR) is a key target in cancer chemotherapy. The enzyme catalyzes reduction of ribonucleotides to 2′-deoxyribonucleotides and its activity is rate-limiting in de novo synthesis of deoxynucleotide triphosphates (dNTPs). Nucleoside analogues have been investigated as anticanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicinal chemistry research 2022-07, Vol.31 (7), p.1109-1119
Hauptverfasser: Salvador, Prince J., Jacobs, Heather B., Alnouri, Lujain, Fee, Asia, Utley, Lynn M., Mabry, Madison, Krajeck, Hannah, Dicksion, Christopher, Awad, Ahmed M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1119
container_issue 7
container_start_page 1109
container_title Medicinal chemistry research
container_volume 31
creator Salvador, Prince J.
Jacobs, Heather B.
Alnouri, Lujain
Fee, Asia
Utley, Lynn M.
Mabry, Madison
Krajeck, Hannah
Dicksion, Christopher
Awad, Ahmed M.
description Ribonucleotide reductase (RNR) is a key target in cancer chemotherapy. The enzyme catalyzes reduction of ribonucleotides to 2′-deoxyribonucleotides and its activity is rate-limiting in de novo synthesis of deoxynucleotide triphosphates (dNTPs). Nucleoside analogues have been investigated as anticancer drugs that inhibit human RNR, however, problems with toxicity and cancer resistance remain challenging. Herein we report a convenient synthesis of six novel nucleoside analogues modified with benzenesulfonamide derivatives: 4-carboxybenzenesulfonamide, 4-chloro-3-sulfamoylbenzoic acid, 2-chloro-4-fluoro-5-sulfamoylbenzoic acid, 2,3-dimethoxy-5-sulfamoylbenzoic acid, N -benzyl-4-chloro-5-sulfamoylanthranilic acid, or furosemide. Mitsunobu reaction between the carboxyl group of benzoic acid sulfonamides and the 5′ hydroxyl of uridine produced uridyl sulfamoylbenzoates with excellent yields. Molecular docking was performed to examine conformation and binding affinity with the large subunit M1 of RNR. The sulfamoyl moiety has shown strong H-bonding with known substrate-binding residues such as Ser202 and Thr607 in the catalytic site. The electron-withdrawing fluorine and chlorine enhanced binding, whereas the electron-donating methoxy group diminished binding. In silico ADMET evaluations showed favorable pharmacological and toxicity profiles with excellent solubility scores of at least −3.0 log  S . Hence, we propose sulfamoylbenzoate nucleosides enhanced with electron-withdrawing groups as potential RNR inhibitors and are worth further investigation as RNR‐targeted anticancer drugs.
doi_str_mv 10.1007/s00044-021-02840-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2679268494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679268494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f0bb906dd3da93b2ebf045499a0035e4dba009350bc537e6c56fee6c87aa1b173</originalsourceid><addsrcrecordid>eNp9kc1qHDEQhIfgQPz3AjkJcokP40gjzczOMZjYMdgEHPssWlLProxW2uhnYf1QfkZrswHfchBdiKqvaappPjN6ySgdvyVKqRAt7Vh9C0Fb8aE5Zn0v2gXr6FHVtOqu7_in5iSlZ0r5SEV_3Lz-3vm8wmQTAW-I9SRZZ3UguAVXINvgSZiJD1t0pERrdo6k4mZYh51T6F8CZCQGo91W8xYrJpFNyOizBVeZ2WrwGiOBZf1LJENcYrZ-Se5ZJanibd5vWJU1eBKtCr5ohyFbgySiKTpDQvJ19fBwzy7Omo8zuITn_-Zp83T94_HqZ3v36-b26vtdqzmbcjtTpSY6GMMNTFx1qOZ6rZgmqIf3KIyqYuI9VbrnIw66H2asYzECMMVGftp8OXA3MfwpmLJ8DiX6ulJ2wzh1w0JMorq6g0vHkFLEWW6iXUPcSUblvhd56EXWXuTfXuQ-xA-hVM1-ifEd_Z_UG-CllSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679268494</pqid></control><display><type>article</type><title>Synthesis and in silico evaluation of novel uridyl sulfamoylbenzoate derivatives as potential anticancer agents targeting M1 subunit of human ribonucleotide reductase (hRRM1)</title><source>SpringerNature Journals</source><creator>Salvador, Prince J. ; Jacobs, Heather B. ; Alnouri, Lujain ; Fee, Asia ; Utley, Lynn M. ; Mabry, Madison ; Krajeck, Hannah ; Dicksion, Christopher ; Awad, Ahmed M.</creator><creatorcontrib>Salvador, Prince J. ; Jacobs, Heather B. ; Alnouri, Lujain ; Fee, Asia ; Utley, Lynn M. ; Mabry, Madison ; Krajeck, Hannah ; Dicksion, Christopher ; Awad, Ahmed M.</creatorcontrib><description>Ribonucleotide reductase (RNR) is a key target in cancer chemotherapy. The enzyme catalyzes reduction of ribonucleotides to 2′-deoxyribonucleotides and its activity is rate-limiting in de novo synthesis of deoxynucleotide triphosphates (dNTPs). Nucleoside analogues have been investigated as anticancer drugs that inhibit human RNR, however, problems with toxicity and cancer resistance remain challenging. Herein we report a convenient synthesis of six novel nucleoside analogues modified with benzenesulfonamide derivatives: 4-carboxybenzenesulfonamide, 4-chloro-3-sulfamoylbenzoic acid, 2-chloro-4-fluoro-5-sulfamoylbenzoic acid, 2,3-dimethoxy-5-sulfamoylbenzoic acid, N -benzyl-4-chloro-5-sulfamoylanthranilic acid, or furosemide. Mitsunobu reaction between the carboxyl group of benzoic acid sulfonamides and the 5′ hydroxyl of uridine produced uridyl sulfamoylbenzoates with excellent yields. Molecular docking was performed to examine conformation and binding affinity with the large subunit M1 of RNR. The sulfamoyl moiety has shown strong H-bonding with known substrate-binding residues such as Ser202 and Thr607 in the catalytic site. The electron-withdrawing fluorine and chlorine enhanced binding, whereas the electron-donating methoxy group diminished binding. In silico ADMET evaluations showed favorable pharmacological and toxicity profiles with excellent solubility scores of at least −3.0 log  S . Hence, we propose sulfamoylbenzoate nucleosides enhanced with electron-withdrawing groups as potential RNR inhibitors and are worth further investigation as RNR‐targeted anticancer drugs.</description><identifier>ISSN: 1054-2523</identifier><identifier>EISSN: 1554-8120</identifier><identifier>DOI: 10.1007/s00044-021-02840-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acids ; Anticancer properties ; Antineoplastic drugs ; Antitumor agents ; Benzoic acid ; Binding ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Bonding strength ; Cancer ; Carboxyl group ; Chemotherapy ; Chlorine ; Conformation ; Deoxyribonucleotides ; Drugs ; Electrons ; Evaluation ; Fluorine ; Furosemide ; Inorganic Chemistry ; Medicinal Chemistry ; Molecular docking ; Nucleoside analogs ; Nucleosides ; Original Research ; Pharmacology/Toxicology ; Reductases ; Ribonucleotide reductase ; Ribonucleotides ; Substrates ; Sulfonamides ; Synthesis ; Toxicity ; Uridine</subject><ispartof>Medicinal chemistry research, 2022-07, Vol.31 (7), p.1109-1119</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f0bb906dd3da93b2ebf045499a0035e4dba009350bc537e6c56fee6c87aa1b173</citedby><cites>FETCH-LOGICAL-c319t-f0bb906dd3da93b2ebf045499a0035e4dba009350bc537e6c56fee6c87aa1b173</cites><orcidid>0000-0002-6991-9336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00044-021-02840-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00044-021-02840-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Salvador, Prince J.</creatorcontrib><creatorcontrib>Jacobs, Heather B.</creatorcontrib><creatorcontrib>Alnouri, Lujain</creatorcontrib><creatorcontrib>Fee, Asia</creatorcontrib><creatorcontrib>Utley, Lynn M.</creatorcontrib><creatorcontrib>Mabry, Madison</creatorcontrib><creatorcontrib>Krajeck, Hannah</creatorcontrib><creatorcontrib>Dicksion, Christopher</creatorcontrib><creatorcontrib>Awad, Ahmed M.</creatorcontrib><title>Synthesis and in silico evaluation of novel uridyl sulfamoylbenzoate derivatives as potential anticancer agents targeting M1 subunit of human ribonucleotide reductase (hRRM1)</title><title>Medicinal chemistry research</title><addtitle>Med Chem Res</addtitle><description>Ribonucleotide reductase (RNR) is a key target in cancer chemotherapy. The enzyme catalyzes reduction of ribonucleotides to 2′-deoxyribonucleotides and its activity is rate-limiting in de novo synthesis of deoxynucleotide triphosphates (dNTPs). Nucleoside analogues have been investigated as anticancer drugs that inhibit human RNR, however, problems with toxicity and cancer resistance remain challenging. Herein we report a convenient synthesis of six novel nucleoside analogues modified with benzenesulfonamide derivatives: 4-carboxybenzenesulfonamide, 4-chloro-3-sulfamoylbenzoic acid, 2-chloro-4-fluoro-5-sulfamoylbenzoic acid, 2,3-dimethoxy-5-sulfamoylbenzoic acid, N -benzyl-4-chloro-5-sulfamoylanthranilic acid, or furosemide. Mitsunobu reaction between the carboxyl group of benzoic acid sulfonamides and the 5′ hydroxyl of uridine produced uridyl sulfamoylbenzoates with excellent yields. Molecular docking was performed to examine conformation and binding affinity with the large subunit M1 of RNR. The sulfamoyl moiety has shown strong H-bonding with known substrate-binding residues such as Ser202 and Thr607 in the catalytic site. The electron-withdrawing fluorine and chlorine enhanced binding, whereas the electron-donating methoxy group diminished binding. In silico ADMET evaluations showed favorable pharmacological and toxicity profiles with excellent solubility scores of at least −3.0 log  S . Hence, we propose sulfamoylbenzoate nucleosides enhanced with electron-withdrawing groups as potential RNR inhibitors and are worth further investigation as RNR‐targeted anticancer drugs.</description><subject>Acids</subject><subject>Anticancer properties</subject><subject>Antineoplastic drugs</subject><subject>Antitumor agents</subject><subject>Benzoic acid</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Bonding strength</subject><subject>Cancer</subject><subject>Carboxyl group</subject><subject>Chemotherapy</subject><subject>Chlorine</subject><subject>Conformation</subject><subject>Deoxyribonucleotides</subject><subject>Drugs</subject><subject>Electrons</subject><subject>Evaluation</subject><subject>Fluorine</subject><subject>Furosemide</subject><subject>Inorganic Chemistry</subject><subject>Medicinal Chemistry</subject><subject>Molecular docking</subject><subject>Nucleoside analogs</subject><subject>Nucleosides</subject><subject>Original Research</subject><subject>Pharmacology/Toxicology</subject><subject>Reductases</subject><subject>Ribonucleotide reductase</subject><subject>Ribonucleotides</subject><subject>Substrates</subject><subject>Sulfonamides</subject><subject>Synthesis</subject><subject>Toxicity</subject><subject>Uridine</subject><issn>1054-2523</issn><issn>1554-8120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1qHDEQhIfgQPz3AjkJcokP40gjzczOMZjYMdgEHPssWlLProxW2uhnYf1QfkZrswHfchBdiKqvaappPjN6ySgdvyVKqRAt7Vh9C0Fb8aE5Zn0v2gXr6FHVtOqu7_in5iSlZ0r5SEV_3Lz-3vm8wmQTAW-I9SRZZ3UguAVXINvgSZiJD1t0pERrdo6k4mZYh51T6F8CZCQGo91W8xYrJpFNyOizBVeZ2WrwGiOBZf1LJENcYrZ-Se5ZJanibd5vWJU1eBKtCr5ohyFbgySiKTpDQvJ19fBwzy7Omo8zuITn_-Zp83T94_HqZ3v36-b26vtdqzmbcjtTpSY6GMMNTFx1qOZ6rZgmqIf3KIyqYuI9VbrnIw66H2asYzECMMVGftp8OXA3MfwpmLJ8DiX6ulJ2wzh1w0JMorq6g0vHkFLEWW6iXUPcSUblvhd56EXWXuTfXuQ-xA-hVM1-ifEd_Z_UG-CllSA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Salvador, Prince J.</creator><creator>Jacobs, Heather B.</creator><creator>Alnouri, Lujain</creator><creator>Fee, Asia</creator><creator>Utley, Lynn M.</creator><creator>Mabry, Madison</creator><creator>Krajeck, Hannah</creator><creator>Dicksion, Christopher</creator><creator>Awad, Ahmed M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-6991-9336</orcidid></search><sort><creationdate>20220701</creationdate><title>Synthesis and in silico evaluation of novel uridyl sulfamoylbenzoate derivatives as potential anticancer agents targeting M1 subunit of human ribonucleotide reductase (hRRM1)</title><author>Salvador, Prince J. ; Jacobs, Heather B. ; Alnouri, Lujain ; Fee, Asia ; Utley, Lynn M. ; Mabry, Madison ; Krajeck, Hannah ; Dicksion, Christopher ; Awad, Ahmed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f0bb906dd3da93b2ebf045499a0035e4dba009350bc537e6c56fee6c87aa1b173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Anticancer properties</topic><topic>Antineoplastic drugs</topic><topic>Antitumor agents</topic><topic>Benzoic acid</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Bonding strength</topic><topic>Cancer</topic><topic>Carboxyl group</topic><topic>Chemotherapy</topic><topic>Chlorine</topic><topic>Conformation</topic><topic>Deoxyribonucleotides</topic><topic>Drugs</topic><topic>Electrons</topic><topic>Evaluation</topic><topic>Fluorine</topic><topic>Furosemide</topic><topic>Inorganic Chemistry</topic><topic>Medicinal Chemistry</topic><topic>Molecular docking</topic><topic>Nucleoside analogs</topic><topic>Nucleosides</topic><topic>Original Research</topic><topic>Pharmacology/Toxicology</topic><topic>Reductases</topic><topic>Ribonucleotide reductase</topic><topic>Ribonucleotides</topic><topic>Substrates</topic><topic>Sulfonamides</topic><topic>Synthesis</topic><topic>Toxicity</topic><topic>Uridine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salvador, Prince J.</creatorcontrib><creatorcontrib>Jacobs, Heather B.</creatorcontrib><creatorcontrib>Alnouri, Lujain</creatorcontrib><creatorcontrib>Fee, Asia</creatorcontrib><creatorcontrib>Utley, Lynn M.</creatorcontrib><creatorcontrib>Mabry, Madison</creatorcontrib><creatorcontrib>Krajeck, Hannah</creatorcontrib><creatorcontrib>Dicksion, Christopher</creatorcontrib><creatorcontrib>Awad, Ahmed M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Medicinal chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salvador, Prince J.</au><au>Jacobs, Heather B.</au><au>Alnouri, Lujain</au><au>Fee, Asia</au><au>Utley, Lynn M.</au><au>Mabry, Madison</au><au>Krajeck, Hannah</au><au>Dicksion, Christopher</au><au>Awad, Ahmed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and in silico evaluation of novel uridyl sulfamoylbenzoate derivatives as potential anticancer agents targeting M1 subunit of human ribonucleotide reductase (hRRM1)</atitle><jtitle>Medicinal chemistry research</jtitle><stitle>Med Chem Res</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>31</volume><issue>7</issue><spage>1109</spage><epage>1119</epage><pages>1109-1119</pages><issn>1054-2523</issn><eissn>1554-8120</eissn><abstract>Ribonucleotide reductase (RNR) is a key target in cancer chemotherapy. The enzyme catalyzes reduction of ribonucleotides to 2′-deoxyribonucleotides and its activity is rate-limiting in de novo synthesis of deoxynucleotide triphosphates (dNTPs). Nucleoside analogues have been investigated as anticancer drugs that inhibit human RNR, however, problems with toxicity and cancer resistance remain challenging. Herein we report a convenient synthesis of six novel nucleoside analogues modified with benzenesulfonamide derivatives: 4-carboxybenzenesulfonamide, 4-chloro-3-sulfamoylbenzoic acid, 2-chloro-4-fluoro-5-sulfamoylbenzoic acid, 2,3-dimethoxy-5-sulfamoylbenzoic acid, N -benzyl-4-chloro-5-sulfamoylanthranilic acid, or furosemide. Mitsunobu reaction between the carboxyl group of benzoic acid sulfonamides and the 5′ hydroxyl of uridine produced uridyl sulfamoylbenzoates with excellent yields. Molecular docking was performed to examine conformation and binding affinity with the large subunit M1 of RNR. The sulfamoyl moiety has shown strong H-bonding with known substrate-binding residues such as Ser202 and Thr607 in the catalytic site. The electron-withdrawing fluorine and chlorine enhanced binding, whereas the electron-donating methoxy group diminished binding. In silico ADMET evaluations showed favorable pharmacological and toxicity profiles with excellent solubility scores of at least −3.0 log  S . Hence, we propose sulfamoylbenzoate nucleosides enhanced with electron-withdrawing groups as potential RNR inhibitors and are worth further investigation as RNR‐targeted anticancer drugs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00044-021-02840-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6991-9336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-2523
ispartof Medicinal chemistry research, 2022-07, Vol.31 (7), p.1109-1119
issn 1054-2523
1554-8120
language eng
recordid cdi_proquest_journals_2679268494
source SpringerNature Journals
subjects Acids
Anticancer properties
Antineoplastic drugs
Antitumor agents
Benzoic acid
Binding
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bioorganic Chemistry
Bonding strength
Cancer
Carboxyl group
Chemotherapy
Chlorine
Conformation
Deoxyribonucleotides
Drugs
Electrons
Evaluation
Fluorine
Furosemide
Inorganic Chemistry
Medicinal Chemistry
Molecular docking
Nucleoside analogs
Nucleosides
Original Research
Pharmacology/Toxicology
Reductases
Ribonucleotide reductase
Ribonucleotides
Substrates
Sulfonamides
Synthesis
Toxicity
Uridine
title Synthesis and in silico evaluation of novel uridyl sulfamoylbenzoate derivatives as potential anticancer agents targeting M1 subunit of human ribonucleotide reductase (hRRM1)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20in%20silico%20evaluation%20of%20novel%20uridyl%20sulfamoylbenzoate%20derivatives%20as%20potential%20anticancer%20agents%20targeting%20M1%20subunit%20of%20human%20ribonucleotide%20reductase%20(hRRM1)&rft.jtitle=Medicinal%20chemistry%20research&rft.au=Salvador,%20Prince%20J.&rft.date=2022-07-01&rft.volume=31&rft.issue=7&rft.spage=1109&rft.epage=1119&rft.pages=1109-1119&rft.issn=1054-2523&rft.eissn=1554-8120&rft_id=info:doi/10.1007/s00044-021-02840-4&rft_dat=%3Cproquest_cross%3E2679268494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679268494&rft_id=info:pmid/&rfr_iscdi=true