Multi‐objective optimization design of U3Si2–FeCrAl accident tolerant fuel elements based on Gaussian process and genetic algorithm
Summary Among various accident tolerant fuel (ATF) concepts, U3Si2–FeCrAl fuel systems are considered as ones of the most potential fuel for the next generation light water reactor. In this work, a multi‐objective optimization framework based on multi‐objective genetic algorithm (GA) and Gaussian pr...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2022-07, Vol.46 (9), p.12108-12121 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12121 |
---|---|
container_issue | 9 |
container_start_page | 12108 |
container_title | International journal of energy research |
container_volume | 46 |
creator | Chen, Hao Zhou, Yi Li, Quan Liu, Zhenhai Qi, Feipeng Ma, Chao Zhao, Bo Huang, Yongzhong |
description | Summary
Among various accident tolerant fuel (ATF) concepts, U3Si2–FeCrAl fuel systems are considered as ones of the most potential fuel for the next generation light water reactor. In this work, a multi‐objective optimization framework based on multi‐objective genetic algorithm (GA) and Gaussian process (GP) was established for the optimal design of U3Si2–FeCrAl ATF fuel element. The coupling of GA and surrogate GP model could take advantage of the high fidelity of multi‐physics modeling and the global searching capability of GA, therefore allowing to perform a relatively fast and accurate multi‐objective optimization design for the U3Si2–FeCrAl ATF fuel element. Maximum fuel temperature, maximum cladding Von–Mises stress, and maximum plenum pressure are considered as the three objective functions for the optimization problem in this study. According to the Pareto approximation surface obtained in the optimization process, a lowest maximum fuel temperature of 871 K, a lowest maximum cladding stress of 87.9 MPa, and a lowest plenum pressure of 3.1 MPa for the U3Si2–FeCrAl ATF fuel element could be achieved based on different design parameters. The multi‐objective optimization framework developed in this work could perform as an efficient tool for the multi‐objective optimization design of the ATF fuel element.
A multi‐physics model for U3Si2–FeCrAl fuel element evaluation was developed.
A multi‐objective optimization framework for U3Si2–FeCrAl fuel element was built.
Gaussian process surrogate model was built for reducing computational cost.
Genetic algorithm and Gaussian process are coupled for fuel optimal design. |
doi_str_mv | 10.1002/er.7976 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2678715168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678715168</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2196-33127074e6147886d134a7a193ca49331ca85ce2c0a048ee372140d74c016c1d3</originalsourceid><addsrcrecordid>eNotUMFKAzEUDKJgreIvBDzK1rxNutk9ltJWoSKohd6WNPtaU9LdNckq9dSbV8E_7Je4pZ7mMTPMPIaQa2A9YCy-Q9eTmUxOSAdYlkUAYn5KOownPMqYnJ-TC-_XjLUayA75fmxsMPvdT7VYow7mA2lVB7MxXyqYqqQFerMqabWkM_5i4v3ud4xDN7BUaW0KLAMNlUWn2mPZoKVocdOyni6Ux4K2CRPVeG9USWtXafSeqrKgKywxGE2VXVXOhLfNJTlbKuvx6h-7ZDYevQ7vo-nT5GE4mEZ1DFkScQ6xZFJgAkKmaVIAF0oqyLhWImtVrdK-xlgzxUSKyGUMghVSaAaJhoJ3yc0xt_3mvUEf8nXVuLKtzONEphL6kKSt6_bo-jQWt3ntzEa5bQ4sP0yco8sPE-ej5wPwP2ancpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678715168</pqid></control><display><type>article</type><title>Multi‐objective optimization design of U3Si2–FeCrAl accident tolerant fuel elements based on Gaussian process and genetic algorithm</title><source>Wiley-Blackwell Journals</source><creator>Chen, Hao ; Zhou, Yi ; Li, Quan ; Liu, Zhenhai ; Qi, Feipeng ; Ma, Chao ; Zhao, Bo ; Huang, Yongzhong</creator><creatorcontrib>Chen, Hao ; Zhou, Yi ; Li, Quan ; Liu, Zhenhai ; Qi, Feipeng ; Ma, Chao ; Zhao, Bo ; Huang, Yongzhong</creatorcontrib><description>Summary
Among various accident tolerant fuel (ATF) concepts, U3Si2–FeCrAl fuel systems are considered as ones of the most potential fuel for the next generation light water reactor. In this work, a multi‐objective optimization framework based on multi‐objective genetic algorithm (GA) and Gaussian process (GP) was established for the optimal design of U3Si2–FeCrAl ATF fuel element. The coupling of GA and surrogate GP model could take advantage of the high fidelity of multi‐physics modeling and the global searching capability of GA, therefore allowing to perform a relatively fast and accurate multi‐objective optimization design for the U3Si2–FeCrAl ATF fuel element. Maximum fuel temperature, maximum cladding Von–Mises stress, and maximum plenum pressure are considered as the three objective functions for the optimization problem in this study. According to the Pareto approximation surface obtained in the optimization process, a lowest maximum fuel temperature of 871 K, a lowest maximum cladding stress of 87.9 MPa, and a lowest plenum pressure of 3.1 MPa for the U3Si2–FeCrAl ATF fuel element could be achieved based on different design parameters. The multi‐objective optimization framework developed in this work could perform as an efficient tool for the multi‐objective optimization design of the ATF fuel element.
A multi‐physics model for U3Si2–FeCrAl fuel element evaluation was developed.
A multi‐objective optimization framework for U3Si2–FeCrAl fuel element was built.
Gaussian process surrogate model was built for reducing computational cost.
Genetic algorithm and Gaussian process are coupled for fuel optimal design.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.7976</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>accident tolerant fuel ; Accidents ; Algorithms ; Approximation ; Cladding ; Design ; Design optimization ; Design parameters ; Fuel systems ; Gaussian process ; genetic algorithm ; Genetic algorithms ; Light water reactors ; multi‐objective optimization ; multi‐physics modeling ; Nuclear fuel elements ; Optimization ; Physics ; Temperature ; Uranium silicide</subject><ispartof>International journal of energy research, 2022-07, Vol.46 (9), p.12108-12121</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8058-6352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.7976$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.7976$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Liu, Zhenhai</creatorcontrib><creatorcontrib>Qi, Feipeng</creatorcontrib><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Huang, Yongzhong</creatorcontrib><title>Multi‐objective optimization design of U3Si2–FeCrAl accident tolerant fuel elements based on Gaussian process and genetic algorithm</title><title>International journal of energy research</title><description>Summary
Among various accident tolerant fuel (ATF) concepts, U3Si2–FeCrAl fuel systems are considered as ones of the most potential fuel for the next generation light water reactor. In this work, a multi‐objective optimization framework based on multi‐objective genetic algorithm (GA) and Gaussian process (GP) was established for the optimal design of U3Si2–FeCrAl ATF fuel element. The coupling of GA and surrogate GP model could take advantage of the high fidelity of multi‐physics modeling and the global searching capability of GA, therefore allowing to perform a relatively fast and accurate multi‐objective optimization design for the U3Si2–FeCrAl ATF fuel element. Maximum fuel temperature, maximum cladding Von–Mises stress, and maximum plenum pressure are considered as the three objective functions for the optimization problem in this study. According to the Pareto approximation surface obtained in the optimization process, a lowest maximum fuel temperature of 871 K, a lowest maximum cladding stress of 87.9 MPa, and a lowest plenum pressure of 3.1 MPa for the U3Si2–FeCrAl ATF fuel element could be achieved based on different design parameters. The multi‐objective optimization framework developed in this work could perform as an efficient tool for the multi‐objective optimization design of the ATF fuel element.
A multi‐physics model for U3Si2–FeCrAl fuel element evaluation was developed.
A multi‐objective optimization framework for U3Si2–FeCrAl fuel element was built.
Gaussian process surrogate model was built for reducing computational cost.
Genetic algorithm and Gaussian process are coupled for fuel optimal design.</description><subject>accident tolerant fuel</subject><subject>Accidents</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Cladding</subject><subject>Design</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Fuel systems</subject><subject>Gaussian process</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Light water reactors</subject><subject>multi‐objective optimization</subject><subject>multi‐physics modeling</subject><subject>Nuclear fuel elements</subject><subject>Optimization</subject><subject>Physics</subject><subject>Temperature</subject><subject>Uranium silicide</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotUMFKAzEUDKJgreIvBDzK1rxNutk9ltJWoSKohd6WNPtaU9LdNckq9dSbV8E_7Je4pZ7mMTPMPIaQa2A9YCy-Q9eTmUxOSAdYlkUAYn5KOownPMqYnJ-TC-_XjLUayA75fmxsMPvdT7VYow7mA2lVB7MxXyqYqqQFerMqabWkM_5i4v3ud4xDN7BUaW0KLAMNlUWn2mPZoKVocdOyni6Ux4K2CRPVeG9USWtXafSeqrKgKywxGE2VXVXOhLfNJTlbKuvx6h-7ZDYevQ7vo-nT5GE4mEZ1DFkScQ6xZFJgAkKmaVIAF0oqyLhWImtVrdK-xlgzxUSKyGUMghVSaAaJhoJ3yc0xt_3mvUEf8nXVuLKtzONEphL6kKSt6_bo-jQWt3ntzEa5bQ4sP0yco8sPE-ej5wPwP2ancpk</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Chen, Hao</creator><creator>Zhou, Yi</creator><creator>Li, Quan</creator><creator>Liu, Zhenhai</creator><creator>Qi, Feipeng</creator><creator>Ma, Chao</creator><creator>Zhao, Bo</creator><creator>Huang, Yongzhong</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8058-6352</orcidid></search><sort><creationdate>202207</creationdate><title>Multi‐objective optimization design of U3Si2–FeCrAl accident tolerant fuel elements based on Gaussian process and genetic algorithm</title><author>Chen, Hao ; Zhou, Yi ; Li, Quan ; Liu, Zhenhai ; Qi, Feipeng ; Ma, Chao ; Zhao, Bo ; Huang, Yongzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2196-33127074e6147886d134a7a193ca49331ca85ce2c0a048ee372140d74c016c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>accident tolerant fuel</topic><topic>Accidents</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Cladding</topic><topic>Design</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Fuel systems</topic><topic>Gaussian process</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Light water reactors</topic><topic>multi‐objective optimization</topic><topic>multi‐physics modeling</topic><topic>Nuclear fuel elements</topic><topic>Optimization</topic><topic>Physics</topic><topic>Temperature</topic><topic>Uranium silicide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Liu, Zhenhai</creatorcontrib><creatorcontrib>Qi, Feipeng</creatorcontrib><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Huang, Yongzhong</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hao</au><au>Zhou, Yi</au><au>Li, Quan</au><au>Liu, Zhenhai</au><au>Qi, Feipeng</au><au>Ma, Chao</au><au>Zhao, Bo</au><au>Huang, Yongzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐objective optimization design of U3Si2–FeCrAl accident tolerant fuel elements based on Gaussian process and genetic algorithm</atitle><jtitle>International journal of energy research</jtitle><date>2022-07</date><risdate>2022</risdate><volume>46</volume><issue>9</issue><spage>12108</spage><epage>12121</epage><pages>12108-12121</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
Among various accident tolerant fuel (ATF) concepts, U3Si2–FeCrAl fuel systems are considered as ones of the most potential fuel for the next generation light water reactor. In this work, a multi‐objective optimization framework based on multi‐objective genetic algorithm (GA) and Gaussian process (GP) was established for the optimal design of U3Si2–FeCrAl ATF fuel element. The coupling of GA and surrogate GP model could take advantage of the high fidelity of multi‐physics modeling and the global searching capability of GA, therefore allowing to perform a relatively fast and accurate multi‐objective optimization design for the U3Si2–FeCrAl ATF fuel element. Maximum fuel temperature, maximum cladding Von–Mises stress, and maximum plenum pressure are considered as the three objective functions for the optimization problem in this study. According to the Pareto approximation surface obtained in the optimization process, a lowest maximum fuel temperature of 871 K, a lowest maximum cladding stress of 87.9 MPa, and a lowest plenum pressure of 3.1 MPa for the U3Si2–FeCrAl ATF fuel element could be achieved based on different design parameters. The multi‐objective optimization framework developed in this work could perform as an efficient tool for the multi‐objective optimization design of the ATF fuel element.
A multi‐physics model for U3Si2–FeCrAl fuel element evaluation was developed.
A multi‐objective optimization framework for U3Si2–FeCrAl fuel element was built.
Gaussian process surrogate model was built for reducing computational cost.
Genetic algorithm and Gaussian process are coupled for fuel optimal design.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/er.7976</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8058-6352</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2022-07, Vol.46 (9), p.12108-12121 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2678715168 |
source | Wiley-Blackwell Journals |
subjects | accident tolerant fuel Accidents Algorithms Approximation Cladding Design Design optimization Design parameters Fuel systems Gaussian process genetic algorithm Genetic algorithms Light water reactors multi‐objective optimization multi‐physics modeling Nuclear fuel elements Optimization Physics Temperature Uranium silicide |
title | Multi‐objective optimization design of U3Si2–FeCrAl accident tolerant fuel elements based on Gaussian process and genetic algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T19%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90objective%20optimization%20design%20of%20U3Si2%E2%80%93FeCrAl%20accident%20tolerant%20fuel%20elements%20based%20on%20Gaussian%20process%20and%20genetic%20algorithm&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Chen,%20Hao&rft.date=2022-07&rft.volume=46&rft.issue=9&rft.spage=12108&rft.epage=12121&rft.pages=12108-12121&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.7976&rft_dat=%3Cproquest_wiley%3E2678715168%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678715168&rft_id=info:pmid/&rfr_iscdi=true |