Multi‐objective optimization design of U3Si2–FeCrAl accident tolerant fuel elements based on Gaussian process and genetic algorithm

Summary Among various accident tolerant fuel (ATF) concepts, U3Si2–FeCrAl fuel systems are considered as ones of the most potential fuel for the next generation light water reactor. In this work, a multi‐objective optimization framework based on multi‐objective genetic algorithm (GA) and Gaussian pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2022-07, Vol.46 (9), p.12108-12121
Hauptverfasser: Chen, Hao, Zhou, Yi, Li, Quan, Liu, Zhenhai, Qi, Feipeng, Ma, Chao, Zhao, Bo, Huang, Yongzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12121
container_issue 9
container_start_page 12108
container_title International journal of energy research
container_volume 46
creator Chen, Hao
Zhou, Yi
Li, Quan
Liu, Zhenhai
Qi, Feipeng
Ma, Chao
Zhao, Bo
Huang, Yongzhong
description Summary Among various accident tolerant fuel (ATF) concepts, U3Si2–FeCrAl fuel systems are considered as ones of the most potential fuel for the next generation light water reactor. In this work, a multi‐objective optimization framework based on multi‐objective genetic algorithm (GA) and Gaussian process (GP) was established for the optimal design of U3Si2–FeCrAl ATF fuel element. The coupling of GA and surrogate GP model could take advantage of the high fidelity of multi‐physics modeling and the global searching capability of GA, therefore allowing to perform a relatively fast and accurate multi‐objective optimization design for the U3Si2–FeCrAl ATF fuel element. Maximum fuel temperature, maximum cladding Von–Mises stress, and maximum plenum pressure are considered as the three objective functions for the optimization problem in this study. According to the Pareto approximation surface obtained in the optimization process, a lowest maximum fuel temperature of 871 K, a lowest maximum cladding stress of 87.9 MPa, and a lowest plenum pressure of 3.1 MPa for the U3Si2–FeCrAl ATF fuel element could be achieved based on different design parameters. The multi‐objective optimization framework developed in this work could perform as an efficient tool for the multi‐objective optimization design of the ATF fuel element. A multi‐physics model for U3Si2–FeCrAl fuel element evaluation was developed. A multi‐objective optimization framework for U3Si2–FeCrAl fuel element was built. Gaussian process surrogate model was built for reducing computational cost. Genetic algorithm and Gaussian process are coupled for fuel optimal design.
doi_str_mv 10.1002/er.7976
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2678715168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678715168</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2196-33127074e6147886d134a7a193ca49331ca85ce2c0a048ee372140d74c016c1d3</originalsourceid><addsrcrecordid>eNotUMFKAzEUDKJgreIvBDzK1rxNutk9ltJWoSKohd6WNPtaU9LdNckq9dSbV8E_7Je4pZ7mMTPMPIaQa2A9YCy-Q9eTmUxOSAdYlkUAYn5KOownPMqYnJ-TC-_XjLUayA75fmxsMPvdT7VYow7mA2lVB7MxXyqYqqQFerMqabWkM_5i4v3ud4xDN7BUaW0KLAMNlUWn2mPZoKVocdOyni6Ux4K2CRPVeG9USWtXafSeqrKgKywxGE2VXVXOhLfNJTlbKuvx6h-7ZDYevQ7vo-nT5GE4mEZ1DFkScQ6xZFJgAkKmaVIAF0oqyLhWImtVrdK-xlgzxUSKyGUMghVSaAaJhoJ3yc0xt_3mvUEf8nXVuLKtzONEphL6kKSt6_bo-jQWt3ntzEa5bQ4sP0yco8sPE-ej5wPwP2ancpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678715168</pqid></control><display><type>article</type><title>Multi‐objective optimization design of U3Si2–FeCrAl accident tolerant fuel elements based on Gaussian process and genetic algorithm</title><source>Wiley-Blackwell Journals</source><creator>Chen, Hao ; Zhou, Yi ; Li, Quan ; Liu, Zhenhai ; Qi, Feipeng ; Ma, Chao ; Zhao, Bo ; Huang, Yongzhong</creator><creatorcontrib>Chen, Hao ; Zhou, Yi ; Li, Quan ; Liu, Zhenhai ; Qi, Feipeng ; Ma, Chao ; Zhao, Bo ; Huang, Yongzhong</creatorcontrib><description>Summary Among various accident tolerant fuel (ATF) concepts, U3Si2–FeCrAl fuel systems are considered as ones of the most potential fuel for the next generation light water reactor. In this work, a multi‐objective optimization framework based on multi‐objective genetic algorithm (GA) and Gaussian process (GP) was established for the optimal design of U3Si2–FeCrAl ATF fuel element. The coupling of GA and surrogate GP model could take advantage of the high fidelity of multi‐physics modeling and the global searching capability of GA, therefore allowing to perform a relatively fast and accurate multi‐objective optimization design for the U3Si2–FeCrAl ATF fuel element. Maximum fuel temperature, maximum cladding Von–Mises stress, and maximum plenum pressure are considered as the three objective functions for the optimization problem in this study. According to the Pareto approximation surface obtained in the optimization process, a lowest maximum fuel temperature of 871 K, a lowest maximum cladding stress of 87.9 MPa, and a lowest plenum pressure of 3.1 MPa for the U3Si2–FeCrAl ATF fuel element could be achieved based on different design parameters. The multi‐objective optimization framework developed in this work could perform as an efficient tool for the multi‐objective optimization design of the ATF fuel element. A multi‐physics model for U3Si2–FeCrAl fuel element evaluation was developed. A multi‐objective optimization framework for U3Si2–FeCrAl fuel element was built. Gaussian process surrogate model was built for reducing computational cost. Genetic algorithm and Gaussian process are coupled for fuel optimal design.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.7976</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>accident tolerant fuel ; Accidents ; Algorithms ; Approximation ; Cladding ; Design ; Design optimization ; Design parameters ; Fuel systems ; Gaussian process ; genetic algorithm ; Genetic algorithms ; Light water reactors ; multi‐objective optimization ; multi‐physics modeling ; Nuclear fuel elements ; Optimization ; Physics ; Temperature ; Uranium silicide</subject><ispartof>International journal of energy research, 2022-07, Vol.46 (9), p.12108-12121</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8058-6352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.7976$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.7976$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Liu, Zhenhai</creatorcontrib><creatorcontrib>Qi, Feipeng</creatorcontrib><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Huang, Yongzhong</creatorcontrib><title>Multi‐objective optimization design of U3Si2–FeCrAl accident tolerant fuel elements based on Gaussian process and genetic algorithm</title><title>International journal of energy research</title><description>Summary Among various accident tolerant fuel (ATF) concepts, U3Si2–FeCrAl fuel systems are considered as ones of the most potential fuel for the next generation light water reactor. In this work, a multi‐objective optimization framework based on multi‐objective genetic algorithm (GA) and Gaussian process (GP) was established for the optimal design of U3Si2–FeCrAl ATF fuel element. The coupling of GA and surrogate GP model could take advantage of the high fidelity of multi‐physics modeling and the global searching capability of GA, therefore allowing to perform a relatively fast and accurate multi‐objective optimization design for the U3Si2–FeCrAl ATF fuel element. Maximum fuel temperature, maximum cladding Von–Mises stress, and maximum plenum pressure are considered as the three objective functions for the optimization problem in this study. According to the Pareto approximation surface obtained in the optimization process, a lowest maximum fuel temperature of 871 K, a lowest maximum cladding stress of 87.9 MPa, and a lowest plenum pressure of 3.1 MPa for the U3Si2–FeCrAl ATF fuel element could be achieved based on different design parameters. The multi‐objective optimization framework developed in this work could perform as an efficient tool for the multi‐objective optimization design of the ATF fuel element. A multi‐physics model for U3Si2–FeCrAl fuel element evaluation was developed. A multi‐objective optimization framework for U3Si2–FeCrAl fuel element was built. Gaussian process surrogate model was built for reducing computational cost. Genetic algorithm and Gaussian process are coupled for fuel optimal design.</description><subject>accident tolerant fuel</subject><subject>Accidents</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Cladding</subject><subject>Design</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Fuel systems</subject><subject>Gaussian process</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Light water reactors</subject><subject>multi‐objective optimization</subject><subject>multi‐physics modeling</subject><subject>Nuclear fuel elements</subject><subject>Optimization</subject><subject>Physics</subject><subject>Temperature</subject><subject>Uranium silicide</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotUMFKAzEUDKJgreIvBDzK1rxNutk9ltJWoSKohd6WNPtaU9LdNckq9dSbV8E_7Je4pZ7mMTPMPIaQa2A9YCy-Q9eTmUxOSAdYlkUAYn5KOownPMqYnJ-TC-_XjLUayA75fmxsMPvdT7VYow7mA2lVB7MxXyqYqqQFerMqabWkM_5i4v3ud4xDN7BUaW0KLAMNlUWn2mPZoKVocdOyni6Ux4K2CRPVeG9USWtXafSeqrKgKywxGE2VXVXOhLfNJTlbKuvx6h-7ZDYevQ7vo-nT5GE4mEZ1DFkScQ6xZFJgAkKmaVIAF0oqyLhWImtVrdK-xlgzxUSKyGUMghVSaAaJhoJ3yc0xt_3mvUEf8nXVuLKtzONEphL6kKSt6_bo-jQWt3ntzEa5bQ4sP0yco8sPE-ej5wPwP2ancpk</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Chen, Hao</creator><creator>Zhou, Yi</creator><creator>Li, Quan</creator><creator>Liu, Zhenhai</creator><creator>Qi, Feipeng</creator><creator>Ma, Chao</creator><creator>Zhao, Bo</creator><creator>Huang, Yongzhong</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8058-6352</orcidid></search><sort><creationdate>202207</creationdate><title>Multi‐objective optimization design of U3Si2–FeCrAl accident tolerant fuel elements based on Gaussian process and genetic algorithm</title><author>Chen, Hao ; Zhou, Yi ; Li, Quan ; Liu, Zhenhai ; Qi, Feipeng ; Ma, Chao ; Zhao, Bo ; Huang, Yongzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2196-33127074e6147886d134a7a193ca49331ca85ce2c0a048ee372140d74c016c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>accident tolerant fuel</topic><topic>Accidents</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Cladding</topic><topic>Design</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Fuel systems</topic><topic>Gaussian process</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Light water reactors</topic><topic>multi‐objective optimization</topic><topic>multi‐physics modeling</topic><topic>Nuclear fuel elements</topic><topic>Optimization</topic><topic>Physics</topic><topic>Temperature</topic><topic>Uranium silicide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><creatorcontrib>Liu, Zhenhai</creatorcontrib><creatorcontrib>Qi, Feipeng</creatorcontrib><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Huang, Yongzhong</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hao</au><au>Zhou, Yi</au><au>Li, Quan</au><au>Liu, Zhenhai</au><au>Qi, Feipeng</au><au>Ma, Chao</au><au>Zhao, Bo</au><au>Huang, Yongzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐objective optimization design of U3Si2–FeCrAl accident tolerant fuel elements based on Gaussian process and genetic algorithm</atitle><jtitle>International journal of energy research</jtitle><date>2022-07</date><risdate>2022</risdate><volume>46</volume><issue>9</issue><spage>12108</spage><epage>12121</epage><pages>12108-12121</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary Among various accident tolerant fuel (ATF) concepts, U3Si2–FeCrAl fuel systems are considered as ones of the most potential fuel for the next generation light water reactor. In this work, a multi‐objective optimization framework based on multi‐objective genetic algorithm (GA) and Gaussian process (GP) was established for the optimal design of U3Si2–FeCrAl ATF fuel element. The coupling of GA and surrogate GP model could take advantage of the high fidelity of multi‐physics modeling and the global searching capability of GA, therefore allowing to perform a relatively fast and accurate multi‐objective optimization design for the U3Si2–FeCrAl ATF fuel element. Maximum fuel temperature, maximum cladding Von–Mises stress, and maximum plenum pressure are considered as the three objective functions for the optimization problem in this study. According to the Pareto approximation surface obtained in the optimization process, a lowest maximum fuel temperature of 871 K, a lowest maximum cladding stress of 87.9 MPa, and a lowest plenum pressure of 3.1 MPa for the U3Si2–FeCrAl ATF fuel element could be achieved based on different design parameters. The multi‐objective optimization framework developed in this work could perform as an efficient tool for the multi‐objective optimization design of the ATF fuel element. A multi‐physics model for U3Si2–FeCrAl fuel element evaluation was developed. A multi‐objective optimization framework for U3Si2–FeCrAl fuel element was built. Gaussian process surrogate model was built for reducing computational cost. Genetic algorithm and Gaussian process are coupled for fuel optimal design.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/er.7976</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8058-6352</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2022-07, Vol.46 (9), p.12108-12121
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2678715168
source Wiley-Blackwell Journals
subjects accident tolerant fuel
Accidents
Algorithms
Approximation
Cladding
Design
Design optimization
Design parameters
Fuel systems
Gaussian process
genetic algorithm
Genetic algorithms
Light water reactors
multi‐objective optimization
multi‐physics modeling
Nuclear fuel elements
Optimization
Physics
Temperature
Uranium silicide
title Multi‐objective optimization design of U3Si2–FeCrAl accident tolerant fuel elements based on Gaussian process and genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T19%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90objective%20optimization%20design%20of%20U3Si2%E2%80%93FeCrAl%20accident%20tolerant%20fuel%20elements%20based%20on%20Gaussian%20process%20and%20genetic%20algorithm&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Chen,%20Hao&rft.date=2022-07&rft.volume=46&rft.issue=9&rft.spage=12108&rft.epage=12121&rft.pages=12108-12121&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.7976&rft_dat=%3Cproquest_wiley%3E2678715168%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678715168&rft_id=info:pmid/&rfr_iscdi=true