Elementary fibrations of enriched groupoids
The present paper aims at stressing the importance of the Hofmann–Streicher groupoid model for Martin Löf Type Theory as a link with the first-order equality and its semantics via adjunctions. The groupoid model was introduced by Martin Hofmann in his Ph.D. thesis and later analysed in collaboration...
Gespeichert in:
Veröffentlicht in: | Mathematical structures in computer science 2021-10, Vol.31 (9), p.958-978 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 978 |
---|---|
container_issue | 9 |
container_start_page | 958 |
container_title | Mathematical structures in computer science |
container_volume | 31 |
creator | Emmenegger, Jacopo Pasquali, Fabio Rosolini, Giuseppe |
description | The present paper aims at stressing the importance of the Hofmann–Streicher groupoid model for Martin Löf Type Theory as a link with the first-order equality and its semantics via adjunctions. The groupoid model was introduced by Martin Hofmann in his Ph.D. thesis and later analysed in collaboration with Thomas Streicher. In this paper, after describing an algebraic weak factorisation system
$$\mathsf {L, R}$$
on the category
$${\cal C}-{\cal Gpd}$$
of
$${\cal C}$$
-enriched groupoids, we prove that its fibration of algebras is elementary (in the sense of Lawvere) and use this fact to produce the factorisation of diagonals for
$$\mathsf {L, R}$$
needed to interpret identity types. |
doi_str_mv | 10.1017/S096012952100030X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2678597647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S096012952100030X</cupid><sourcerecordid>2678597647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-5026afec22dfffbc015fd5e79591402f32fbfb0f79f9bdcbf6fdabaff67fee7e3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuCR1mdyXaT5iilVqHgQQVvS7KZqVvaTU12D_57t7TgQTzN4b3vPeYJcY1wh4D6_hWMApSmlAgABXyciBFOlMmnoOWpGO3lfK-fi4uU1gBYIJiRuJ1vaEttZ-N3xo2LtmtCm7LAGbWxqT_JZ6sY-l1ofLoUZ2w3ia6OdyzeH-dvs6d8-bJ4nj0s87pA2eUlSGWZaik9M7sasGRfkjalwQlILiQ7dsDasHG-dqzYW2eZlWYiTcVY3BxydzF89ZS6ah362A6VlVR6WhqtJnpw4cFVx5BSJK52sdkOf1QI1X6T6s8mA1McGbt1sfEr-o3-n_oBrWJkdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678597647</pqid></control><display><type>article</type><title>Elementary fibrations of enriched groupoids</title><source>Cambridge Journals</source><creator>Emmenegger, Jacopo ; Pasquali, Fabio ; Rosolini, Giuseppe</creator><creatorcontrib>Emmenegger, Jacopo ; Pasquali, Fabio ; Rosolini, Giuseppe</creatorcontrib><description>The present paper aims at stressing the importance of the Hofmann–Streicher groupoid model for Martin Löf Type Theory as a link with the first-order equality and its semantics via adjunctions. The groupoid model was introduced by Martin Hofmann in his Ph.D. thesis and later analysed in collaboration with Thomas Streicher. In this paper, after describing an algebraic weak factorisation system
$$\mathsf {L, R}$$
on the category
$${\cal C}-{\cal Gpd}$$
of
$${\cal C}$$
-enriched groupoids, we prove that its fibration of algebras is elementary (in the sense of Lawvere) and use this fact to produce the factorisation of diagonals for
$$\mathsf {L, R}$$
needed to interpret identity types.</description><identifier>ISSN: 0960-1295</identifier><identifier>EISSN: 1469-8072</identifier><identifier>DOI: 10.1017/S096012952100030X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Collaboration ; Computer science ; Equality ; Factorization ; Semantics</subject><ispartof>Mathematical structures in computer science, 2021-10, Vol.31 (9), p.958-978</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-5026afec22dfffbc015fd5e79591402f32fbfb0f79f9bdcbf6fdabaff67fee7e3</cites><orcidid>0000-0003-1672-9368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S096012952100030X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Emmenegger, Jacopo</creatorcontrib><creatorcontrib>Pasquali, Fabio</creatorcontrib><creatorcontrib>Rosolini, Giuseppe</creatorcontrib><title>Elementary fibrations of enriched groupoids</title><title>Mathematical structures in computer science</title><addtitle>Math. Struct. Comp. Sci</addtitle><description>The present paper aims at stressing the importance of the Hofmann–Streicher groupoid model for Martin Löf Type Theory as a link with the first-order equality and its semantics via adjunctions. The groupoid model was introduced by Martin Hofmann in his Ph.D. thesis and later analysed in collaboration with Thomas Streicher. In this paper, after describing an algebraic weak factorisation system
$$\mathsf {L, R}$$
on the category
$${\cal C}-{\cal Gpd}$$
of
$${\cal C}$$
-enriched groupoids, we prove that its fibration of algebras is elementary (in the sense of Lawvere) and use this fact to produce the factorisation of diagonals for
$$\mathsf {L, R}$$
needed to interpret identity types.</description><subject>Algebra</subject><subject>Collaboration</subject><subject>Computer science</subject><subject>Equality</subject><subject>Factorization</subject><subject>Semantics</subject><issn>0960-1295</issn><issn>1469-8072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuCR1mdyXaT5iilVqHgQQVvS7KZqVvaTU12D_57t7TgQTzN4b3vPeYJcY1wh4D6_hWMApSmlAgABXyciBFOlMmnoOWpGO3lfK-fi4uU1gBYIJiRuJ1vaEttZ-N3xo2LtmtCm7LAGbWxqT_JZ6sY-l1ofLoUZ2w3ia6OdyzeH-dvs6d8-bJ4nj0s87pA2eUlSGWZaik9M7sasGRfkjalwQlILiQ7dsDasHG-dqzYW2eZlWYiTcVY3BxydzF89ZS6ah362A6VlVR6WhqtJnpw4cFVx5BSJK52sdkOf1QI1X6T6s8mA1McGbt1sfEr-o3-n_oBrWJkdw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Emmenegger, Jacopo</creator><creator>Pasquali, Fabio</creator><creator>Rosolini, Giuseppe</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1672-9368</orcidid></search><sort><creationdate>20211001</creationdate><title>Elementary fibrations of enriched groupoids</title><author>Emmenegger, Jacopo ; Pasquali, Fabio ; Rosolini, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-5026afec22dfffbc015fd5e79591402f32fbfb0f79f9bdcbf6fdabaff67fee7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Collaboration</topic><topic>Computer science</topic><topic>Equality</topic><topic>Factorization</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emmenegger, Jacopo</creatorcontrib><creatorcontrib>Pasquali, Fabio</creatorcontrib><creatorcontrib>Rosolini, Giuseppe</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical structures in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emmenegger, Jacopo</au><au>Pasquali, Fabio</au><au>Rosolini, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elementary fibrations of enriched groupoids</atitle><jtitle>Mathematical structures in computer science</jtitle><addtitle>Math. Struct. Comp. Sci</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>9</issue><spage>958</spage><epage>978</epage><pages>958-978</pages><issn>0960-1295</issn><eissn>1469-8072</eissn><abstract>The present paper aims at stressing the importance of the Hofmann–Streicher groupoid model for Martin Löf Type Theory as a link with the first-order equality and its semantics via adjunctions. The groupoid model was introduced by Martin Hofmann in his Ph.D. thesis and later analysed in collaboration with Thomas Streicher. In this paper, after describing an algebraic weak factorisation system
$$\mathsf {L, R}$$
on the category
$${\cal C}-{\cal Gpd}$$
of
$${\cal C}$$
-enriched groupoids, we prove that its fibration of algebras is elementary (in the sense of Lawvere) and use this fact to produce the factorisation of diagonals for
$$\mathsf {L, R}$$
needed to interpret identity types.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S096012952100030X</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1672-9368</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1295 |
ispartof | Mathematical structures in computer science, 2021-10, Vol.31 (9), p.958-978 |
issn | 0960-1295 1469-8072 |
language | eng |
recordid | cdi_proquest_journals_2678597647 |
source | Cambridge Journals |
subjects | Algebra Collaboration Computer science Equality Factorization Semantics |
title | Elementary fibrations of enriched groupoids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elementary%20fibrations%20of%20enriched%20groupoids&rft.jtitle=Mathematical%20structures%20in%20computer%20science&rft.au=Emmenegger,%20Jacopo&rft.date=2021-10-01&rft.volume=31&rft.issue=9&rft.spage=958&rft.epage=978&rft.pages=958-978&rft.issn=0960-1295&rft.eissn=1469-8072&rft_id=info:doi/10.1017/S096012952100030X&rft_dat=%3Cproquest_cross%3E2678597647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678597647&rft_id=info:pmid/&rft_cupid=10_1017_S096012952100030X&rfr_iscdi=true |