Elementary fibrations of enriched groupoids

The present paper aims at stressing the importance of the Hofmann–Streicher groupoid model for Martin Löf Type Theory as a link with the first-order equality and its semantics via adjunctions. The groupoid model was introduced by Martin Hofmann in his Ph.D. thesis and later analysed in collaboration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical structures in computer science 2021-10, Vol.31 (9), p.958-978
Hauptverfasser: Emmenegger, Jacopo, Pasquali, Fabio, Rosolini, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 978
container_issue 9
container_start_page 958
container_title Mathematical structures in computer science
container_volume 31
creator Emmenegger, Jacopo
Pasquali, Fabio
Rosolini, Giuseppe
description The present paper aims at stressing the importance of the Hofmann–Streicher groupoid model for Martin Löf Type Theory as a link with the first-order equality and its semantics via adjunctions. The groupoid model was introduced by Martin Hofmann in his Ph.D. thesis and later analysed in collaboration with Thomas Streicher. In this paper, after describing an algebraic weak factorisation system $$\mathsf {L, R}$$ on the category $${\cal C}-{\cal Gpd}$$ of $${\cal C}$$ -enriched groupoids, we prove that its fibration of algebras is elementary (in the sense of Lawvere) and use this fact to produce the factorisation of diagonals for $$\mathsf {L, R}$$ needed to interpret identity types.
doi_str_mv 10.1017/S096012952100030X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2678597647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S096012952100030X</cupid><sourcerecordid>2678597647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-5026afec22dfffbc015fd5e79591402f32fbfb0f79f9bdcbf6fdabaff67fee7e3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuCR1mdyXaT5iilVqHgQQVvS7KZqVvaTU12D_57t7TgQTzN4b3vPeYJcY1wh4D6_hWMApSmlAgABXyciBFOlMmnoOWpGO3lfK-fi4uU1gBYIJiRuJ1vaEttZ-N3xo2LtmtCm7LAGbWxqT_JZ6sY-l1ofLoUZ2w3ia6OdyzeH-dvs6d8-bJ4nj0s87pA2eUlSGWZaik9M7sasGRfkjalwQlILiQ7dsDasHG-dqzYW2eZlWYiTcVY3BxydzF89ZS6ah362A6VlVR6WhqtJnpw4cFVx5BSJK52sdkOf1QI1X6T6s8mA1McGbt1sfEr-o3-n_oBrWJkdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678597647</pqid></control><display><type>article</type><title>Elementary fibrations of enriched groupoids</title><source>Cambridge Journals</source><creator>Emmenegger, Jacopo ; Pasquali, Fabio ; Rosolini, Giuseppe</creator><creatorcontrib>Emmenegger, Jacopo ; Pasquali, Fabio ; Rosolini, Giuseppe</creatorcontrib><description>The present paper aims at stressing the importance of the Hofmann–Streicher groupoid model for Martin Löf Type Theory as a link with the first-order equality and its semantics via adjunctions. The groupoid model was introduced by Martin Hofmann in his Ph.D. thesis and later analysed in collaboration with Thomas Streicher. In this paper, after describing an algebraic weak factorisation system $$\mathsf {L, R}$$ on the category $${\cal C}-{\cal Gpd}$$ of $${\cal C}$$ -enriched groupoids, we prove that its fibration of algebras is elementary (in the sense of Lawvere) and use this fact to produce the factorisation of diagonals for $$\mathsf {L, R}$$ needed to interpret identity types.</description><identifier>ISSN: 0960-1295</identifier><identifier>EISSN: 1469-8072</identifier><identifier>DOI: 10.1017/S096012952100030X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Collaboration ; Computer science ; Equality ; Factorization ; Semantics</subject><ispartof>Mathematical structures in computer science, 2021-10, Vol.31 (9), p.958-978</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-5026afec22dfffbc015fd5e79591402f32fbfb0f79f9bdcbf6fdabaff67fee7e3</cites><orcidid>0000-0003-1672-9368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S096012952100030X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Emmenegger, Jacopo</creatorcontrib><creatorcontrib>Pasquali, Fabio</creatorcontrib><creatorcontrib>Rosolini, Giuseppe</creatorcontrib><title>Elementary fibrations of enriched groupoids</title><title>Mathematical structures in computer science</title><addtitle>Math. Struct. Comp. Sci</addtitle><description>The present paper aims at stressing the importance of the Hofmann–Streicher groupoid model for Martin Löf Type Theory as a link with the first-order equality and its semantics via adjunctions. The groupoid model was introduced by Martin Hofmann in his Ph.D. thesis and later analysed in collaboration with Thomas Streicher. In this paper, after describing an algebraic weak factorisation system $$\mathsf {L, R}$$ on the category $${\cal C}-{\cal Gpd}$$ of $${\cal C}$$ -enriched groupoids, we prove that its fibration of algebras is elementary (in the sense of Lawvere) and use this fact to produce the factorisation of diagonals for $$\mathsf {L, R}$$ needed to interpret identity types.</description><subject>Algebra</subject><subject>Collaboration</subject><subject>Computer science</subject><subject>Equality</subject><subject>Factorization</subject><subject>Semantics</subject><issn>0960-1295</issn><issn>1469-8072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuCR1mdyXaT5iilVqHgQQVvS7KZqVvaTU12D_57t7TgQTzN4b3vPeYJcY1wh4D6_hWMApSmlAgABXyciBFOlMmnoOWpGO3lfK-fi4uU1gBYIJiRuJ1vaEttZ-N3xo2LtmtCm7LAGbWxqT_JZ6sY-l1ofLoUZ2w3ia6OdyzeH-dvs6d8-bJ4nj0s87pA2eUlSGWZaik9M7sasGRfkjalwQlILiQ7dsDasHG-dqzYW2eZlWYiTcVY3BxydzF89ZS6ah362A6VlVR6WhqtJnpw4cFVx5BSJK52sdkOf1QI1X6T6s8mA1McGbt1sfEr-o3-n_oBrWJkdw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Emmenegger, Jacopo</creator><creator>Pasquali, Fabio</creator><creator>Rosolini, Giuseppe</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1672-9368</orcidid></search><sort><creationdate>20211001</creationdate><title>Elementary fibrations of enriched groupoids</title><author>Emmenegger, Jacopo ; Pasquali, Fabio ; Rosolini, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-5026afec22dfffbc015fd5e79591402f32fbfb0f79f9bdcbf6fdabaff67fee7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Collaboration</topic><topic>Computer science</topic><topic>Equality</topic><topic>Factorization</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emmenegger, Jacopo</creatorcontrib><creatorcontrib>Pasquali, Fabio</creatorcontrib><creatorcontrib>Rosolini, Giuseppe</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical structures in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emmenegger, Jacopo</au><au>Pasquali, Fabio</au><au>Rosolini, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elementary fibrations of enriched groupoids</atitle><jtitle>Mathematical structures in computer science</jtitle><addtitle>Math. Struct. Comp. Sci</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>9</issue><spage>958</spage><epage>978</epage><pages>958-978</pages><issn>0960-1295</issn><eissn>1469-8072</eissn><abstract>The present paper aims at stressing the importance of the Hofmann–Streicher groupoid model for Martin Löf Type Theory as a link with the first-order equality and its semantics via adjunctions. The groupoid model was introduced by Martin Hofmann in his Ph.D. thesis and later analysed in collaboration with Thomas Streicher. In this paper, after describing an algebraic weak factorisation system $$\mathsf {L, R}$$ on the category $${\cal C}-{\cal Gpd}$$ of $${\cal C}$$ -enriched groupoids, we prove that its fibration of algebras is elementary (in the sense of Lawvere) and use this fact to produce the factorisation of diagonals for $$\mathsf {L, R}$$ needed to interpret identity types.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S096012952100030X</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1672-9368</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1295
ispartof Mathematical structures in computer science, 2021-10, Vol.31 (9), p.958-978
issn 0960-1295
1469-8072
language eng
recordid cdi_proquest_journals_2678597647
source Cambridge Journals
subjects Algebra
Collaboration
Computer science
Equality
Factorization
Semantics
title Elementary fibrations of enriched groupoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elementary%20fibrations%20of%20enriched%20groupoids&rft.jtitle=Mathematical%20structures%20in%20computer%20science&rft.au=Emmenegger,%20Jacopo&rft.date=2021-10-01&rft.volume=31&rft.issue=9&rft.spage=958&rft.epage=978&rft.pages=958-978&rft.issn=0960-1295&rft.eissn=1469-8072&rft_id=info:doi/10.1017/S096012952100030X&rft_dat=%3Cproquest_cross%3E2678597647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678597647&rft_id=info:pmid/&rft_cupid=10_1017_S096012952100030X&rfr_iscdi=true