Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks

Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-06
Hauptverfasser: Gare, Gautam Rajendrakumar, Fox, Tom, Lowery, Pete, Zamora, Kevin, Tran, Hai V, Hutchins, Laura, Montgomery, David, Krishnan, Amita, Deva Kannan Ramanan, Rodriguez, Ricardo Luis, deBoisblanc, Bennett P, Galeotti, John Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gare, Gautam Rajendrakumar
Fox, Tom
Lowery, Pete
Zamora, Kevin
Tran, Hai V
Hutchins, Laura
Montgomery, David
Krishnan, Amita
Deva Kannan Ramanan
Rodriguez, Ricardo Luis
deBoisblanc, Bennett P
Galeotti, John Michael
description Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We propose to decouple feature learning from downstream lung ultrasound tasks by introducing an auxiliary pre-task of visual biomarker classification. We demonstrate that one can learn an informative, concise, and interpretable feature space from ultrasound videos by training models for predicting biomarker labels. Notably, biomarker feature extractors can be trained from data annotated with weak video-scale supervision. These features can be used by a variety of downstream Expert models targeted for diverse clinical tasks (Diagnosis, lung severity, S/F ratio). Crucially, task-specific expert models are comparable in accuracy to end-to-end models directly trained for such target tasks, while being significantly lower cost to train.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2678581597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678581597</sourcerecordid><originalsourceid>FETCH-proquest_journals_26785815973</originalsourceid><addsrcrecordid>eNqNjs0KgkAUhYcgSMp3uNA60DHTtmU_C5e1lsGuYencuneGevwMeoBWh4_zHTgjFegkiRf5UuuJCkVuURTpVabTNAlUXaJh29orHNAitzWUfoBz59gIeXuBTUu94TuyQEMMBdbkH913sUfjPCPs3oNcu5YsNEw9FPSy4hhNDycjd5mpcWM6wfCXUzXf707b4-LB9PQorrqRZztU1fArT_M4XWfJf9YHDMRGmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678581597</pqid></control><display><type>article</type><title>Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks</title><source>Free E- Journals</source><creator>Gare, Gautam Rajendrakumar ; Fox, Tom ; Lowery, Pete ; Zamora, Kevin ; Tran, Hai V ; Hutchins, Laura ; Montgomery, David ; Krishnan, Amita ; Deva Kannan Ramanan ; Rodriguez, Ricardo Luis ; deBoisblanc, Bennett P ; Galeotti, John Michael</creator><creatorcontrib>Gare, Gautam Rajendrakumar ; Fox, Tom ; Lowery, Pete ; Zamora, Kevin ; Tran, Hai V ; Hutchins, Laura ; Montgomery, David ; Krishnan, Amita ; Deva Kannan Ramanan ; Rodriguez, Ricardo Luis ; deBoisblanc, Bennett P ; Galeotti, John Michael</creatorcontrib><description>Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We propose to decouple feature learning from downstream lung ultrasound tasks by introducing an auxiliary pre-task of visual biomarker classification. We demonstrate that one can learn an informative, concise, and interpretable feature space from ultrasound videos by training models for predicting biomarker labels. Notably, biomarker feature extractors can be trained from data annotated with weak video-scale supervision. These features can be used by a variety of downstream Expert models targeted for diverse clinical tasks (Diagnosis, lung severity, S/F ratio). Crucially, task-specific expert models are comparable in accuracy to end-to-end models directly trained for such target tasks, while being significantly lower cost to train.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Biomarkers ; Decoupling ; Feature extraction ; Lungs ; Machine learning ; Model accuracy ; Training ; Visual tasks</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gare, Gautam Rajendrakumar</creatorcontrib><creatorcontrib>Fox, Tom</creatorcontrib><creatorcontrib>Lowery, Pete</creatorcontrib><creatorcontrib>Zamora, Kevin</creatorcontrib><creatorcontrib>Tran, Hai V</creatorcontrib><creatorcontrib>Hutchins, Laura</creatorcontrib><creatorcontrib>Montgomery, David</creatorcontrib><creatorcontrib>Krishnan, Amita</creatorcontrib><creatorcontrib>Deva Kannan Ramanan</creatorcontrib><creatorcontrib>Rodriguez, Ricardo Luis</creatorcontrib><creatorcontrib>deBoisblanc, Bennett P</creatorcontrib><creatorcontrib>Galeotti, John Michael</creatorcontrib><title>Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks</title><title>arXiv.org</title><description>Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We propose to decouple feature learning from downstream lung ultrasound tasks by introducing an auxiliary pre-task of visual biomarker classification. We demonstrate that one can learn an informative, concise, and interpretable feature space from ultrasound videos by training models for predicting biomarker labels. Notably, biomarker feature extractors can be trained from data annotated with weak video-scale supervision. These features can be used by a variety of downstream Expert models targeted for diverse clinical tasks (Diagnosis, lung severity, S/F ratio). Crucially, task-specific expert models are comparable in accuracy to end-to-end models directly trained for such target tasks, while being significantly lower cost to train.</description><subject>Artificial neural networks</subject><subject>Biomarkers</subject><subject>Decoupling</subject><subject>Feature extraction</subject><subject>Lungs</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Training</subject><subject>Visual tasks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjs0KgkAUhYcgSMp3uNA60DHTtmU_C5e1lsGuYencuneGevwMeoBWh4_zHTgjFegkiRf5UuuJCkVuURTpVabTNAlUXaJh29orHNAitzWUfoBz59gIeXuBTUu94TuyQEMMBdbkH913sUfjPCPs3oNcu5YsNEw9FPSy4hhNDycjd5mpcWM6wfCXUzXf707b4-LB9PQorrqRZztU1fArT_M4XWfJf9YHDMRGmw</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Gare, Gautam Rajendrakumar</creator><creator>Fox, Tom</creator><creator>Lowery, Pete</creator><creator>Zamora, Kevin</creator><creator>Tran, Hai V</creator><creator>Hutchins, Laura</creator><creator>Montgomery, David</creator><creator>Krishnan, Amita</creator><creator>Deva Kannan Ramanan</creator><creator>Rodriguez, Ricardo Luis</creator><creator>deBoisblanc, Bennett P</creator><creator>Galeotti, John Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220616</creationdate><title>Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks</title><author>Gare, Gautam Rajendrakumar ; Fox, Tom ; Lowery, Pete ; Zamora, Kevin ; Tran, Hai V ; Hutchins, Laura ; Montgomery, David ; Krishnan, Amita ; Deva Kannan Ramanan ; Rodriguez, Ricardo Luis ; deBoisblanc, Bennett P ; Galeotti, John Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26785815973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Biomarkers</topic><topic>Decoupling</topic><topic>Feature extraction</topic><topic>Lungs</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Training</topic><topic>Visual tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Gare, Gautam Rajendrakumar</creatorcontrib><creatorcontrib>Fox, Tom</creatorcontrib><creatorcontrib>Lowery, Pete</creatorcontrib><creatorcontrib>Zamora, Kevin</creatorcontrib><creatorcontrib>Tran, Hai V</creatorcontrib><creatorcontrib>Hutchins, Laura</creatorcontrib><creatorcontrib>Montgomery, David</creatorcontrib><creatorcontrib>Krishnan, Amita</creatorcontrib><creatorcontrib>Deva Kannan Ramanan</creatorcontrib><creatorcontrib>Rodriguez, Ricardo Luis</creatorcontrib><creatorcontrib>deBoisblanc, Bennett P</creatorcontrib><creatorcontrib>Galeotti, John Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gare, Gautam Rajendrakumar</au><au>Fox, Tom</au><au>Lowery, Pete</au><au>Zamora, Kevin</au><au>Tran, Hai V</au><au>Hutchins, Laura</au><au>Montgomery, David</au><au>Krishnan, Amita</au><au>Deva Kannan Ramanan</au><au>Rodriguez, Ricardo Luis</au><au>deBoisblanc, Bennett P</au><au>Galeotti, John Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks</atitle><jtitle>arXiv.org</jtitle><date>2022-06-16</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We propose to decouple feature learning from downstream lung ultrasound tasks by introducing an auxiliary pre-task of visual biomarker classification. We demonstrate that one can learn an informative, concise, and interpretable feature space from ultrasound videos by training models for predicting biomarker labels. Notably, biomarker feature extractors can be trained from data annotated with weak video-scale supervision. These features can be used by a variety of downstream Expert models targeted for diverse clinical tasks (Diagnosis, lung severity, S/F ratio). Crucially, task-specific expert models are comparable in accuracy to end-to-end models directly trained for such target tasks, while being significantly lower cost to train.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2678581597
source Free E- Journals
subjects Artificial neural networks
Biomarkers
Decoupling
Feature extraction
Lungs
Machine learning
Model accuracy
Training
Visual tasks
title Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20Generic%20Lung%20Ultrasound%20Biomarkers%20for%20Decoupling%20Feature%20Extraction%20from%20Downstream%20Tasks&rft.jtitle=arXiv.org&rft.au=Gare,%20Gautam%20Rajendrakumar&rft.date=2022-06-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2678581597%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678581597&rft_id=info:pmid/&rfr_iscdi=true