Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks
Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We pro...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gare, Gautam Rajendrakumar Fox, Tom Lowery, Pete Zamora, Kevin Tran, Hai V Hutchins, Laura Montgomery, David Krishnan, Amita Deva Kannan Ramanan Rodriguez, Ricardo Luis deBoisblanc, Bennett P Galeotti, John Michael |
description | Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We propose to decouple feature learning from downstream lung ultrasound tasks by introducing an auxiliary pre-task of visual biomarker classification. We demonstrate that one can learn an informative, concise, and interpretable feature space from ultrasound videos by training models for predicting biomarker labels. Notably, biomarker feature extractors can be trained from data annotated with weak video-scale supervision. These features can be used by a variety of downstream Expert models targeted for diverse clinical tasks (Diagnosis, lung severity, S/F ratio). Crucially, task-specific expert models are comparable in accuracy to end-to-end models directly trained for such target tasks, while being significantly lower cost to train. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2678581597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678581597</sourcerecordid><originalsourceid>FETCH-proquest_journals_26785815973</originalsourceid><addsrcrecordid>eNqNjs0KgkAUhYcgSMp3uNA60DHTtmU_C5e1lsGuYencuneGevwMeoBWh4_zHTgjFegkiRf5UuuJCkVuURTpVabTNAlUXaJh29orHNAitzWUfoBz59gIeXuBTUu94TuyQEMMBdbkH913sUfjPCPs3oNcu5YsNEw9FPSy4hhNDycjd5mpcWM6wfCXUzXf707b4-LB9PQorrqRZztU1fArT_M4XWfJf9YHDMRGmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678581597</pqid></control><display><type>article</type><title>Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks</title><source>Free E- Journals</source><creator>Gare, Gautam Rajendrakumar ; Fox, Tom ; Lowery, Pete ; Zamora, Kevin ; Tran, Hai V ; Hutchins, Laura ; Montgomery, David ; Krishnan, Amita ; Deva Kannan Ramanan ; Rodriguez, Ricardo Luis ; deBoisblanc, Bennett P ; Galeotti, John Michael</creator><creatorcontrib>Gare, Gautam Rajendrakumar ; Fox, Tom ; Lowery, Pete ; Zamora, Kevin ; Tran, Hai V ; Hutchins, Laura ; Montgomery, David ; Krishnan, Amita ; Deva Kannan Ramanan ; Rodriguez, Ricardo Luis ; deBoisblanc, Bennett P ; Galeotti, John Michael</creatorcontrib><description>Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We propose to decouple feature learning from downstream lung ultrasound tasks by introducing an auxiliary pre-task of visual biomarker classification. We demonstrate that one can learn an informative, concise, and interpretable feature space from ultrasound videos by training models for predicting biomarker labels. Notably, biomarker feature extractors can be trained from data annotated with weak video-scale supervision. These features can be used by a variety of downstream Expert models targeted for diverse clinical tasks (Diagnosis, lung severity, S/F ratio). Crucially, task-specific expert models are comparable in accuracy to end-to-end models directly trained for such target tasks, while being significantly lower cost to train.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Biomarkers ; Decoupling ; Feature extraction ; Lungs ; Machine learning ; Model accuracy ; Training ; Visual tasks</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gare, Gautam Rajendrakumar</creatorcontrib><creatorcontrib>Fox, Tom</creatorcontrib><creatorcontrib>Lowery, Pete</creatorcontrib><creatorcontrib>Zamora, Kevin</creatorcontrib><creatorcontrib>Tran, Hai V</creatorcontrib><creatorcontrib>Hutchins, Laura</creatorcontrib><creatorcontrib>Montgomery, David</creatorcontrib><creatorcontrib>Krishnan, Amita</creatorcontrib><creatorcontrib>Deva Kannan Ramanan</creatorcontrib><creatorcontrib>Rodriguez, Ricardo Luis</creatorcontrib><creatorcontrib>deBoisblanc, Bennett P</creatorcontrib><creatorcontrib>Galeotti, John Michael</creatorcontrib><title>Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks</title><title>arXiv.org</title><description>Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We propose to decouple feature learning from downstream lung ultrasound tasks by introducing an auxiliary pre-task of visual biomarker classification. We demonstrate that one can learn an informative, concise, and interpretable feature space from ultrasound videos by training models for predicting biomarker labels. Notably, biomarker feature extractors can be trained from data annotated with weak video-scale supervision. These features can be used by a variety of downstream Expert models targeted for diverse clinical tasks (Diagnosis, lung severity, S/F ratio). Crucially, task-specific expert models are comparable in accuracy to end-to-end models directly trained for such target tasks, while being significantly lower cost to train.</description><subject>Artificial neural networks</subject><subject>Biomarkers</subject><subject>Decoupling</subject><subject>Feature extraction</subject><subject>Lungs</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Training</subject><subject>Visual tasks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjs0KgkAUhYcgSMp3uNA60DHTtmU_C5e1lsGuYencuneGevwMeoBWh4_zHTgjFegkiRf5UuuJCkVuURTpVabTNAlUXaJh29orHNAitzWUfoBz59gIeXuBTUu94TuyQEMMBdbkH913sUfjPCPs3oNcu5YsNEw9FPSy4hhNDycjd5mpcWM6wfCXUzXf707b4-LB9PQorrqRZztU1fArT_M4XWfJf9YHDMRGmw</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Gare, Gautam Rajendrakumar</creator><creator>Fox, Tom</creator><creator>Lowery, Pete</creator><creator>Zamora, Kevin</creator><creator>Tran, Hai V</creator><creator>Hutchins, Laura</creator><creator>Montgomery, David</creator><creator>Krishnan, Amita</creator><creator>Deva Kannan Ramanan</creator><creator>Rodriguez, Ricardo Luis</creator><creator>deBoisblanc, Bennett P</creator><creator>Galeotti, John Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220616</creationdate><title>Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks</title><author>Gare, Gautam Rajendrakumar ; Fox, Tom ; Lowery, Pete ; Zamora, Kevin ; Tran, Hai V ; Hutchins, Laura ; Montgomery, David ; Krishnan, Amita ; Deva Kannan Ramanan ; Rodriguez, Ricardo Luis ; deBoisblanc, Bennett P ; Galeotti, John Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26785815973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Biomarkers</topic><topic>Decoupling</topic><topic>Feature extraction</topic><topic>Lungs</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Training</topic><topic>Visual tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Gare, Gautam Rajendrakumar</creatorcontrib><creatorcontrib>Fox, Tom</creatorcontrib><creatorcontrib>Lowery, Pete</creatorcontrib><creatorcontrib>Zamora, Kevin</creatorcontrib><creatorcontrib>Tran, Hai V</creatorcontrib><creatorcontrib>Hutchins, Laura</creatorcontrib><creatorcontrib>Montgomery, David</creatorcontrib><creatorcontrib>Krishnan, Amita</creatorcontrib><creatorcontrib>Deva Kannan Ramanan</creatorcontrib><creatorcontrib>Rodriguez, Ricardo Luis</creatorcontrib><creatorcontrib>deBoisblanc, Bennett P</creatorcontrib><creatorcontrib>Galeotti, John Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gare, Gautam Rajendrakumar</au><au>Fox, Tom</au><au>Lowery, Pete</au><au>Zamora, Kevin</au><au>Tran, Hai V</au><au>Hutchins, Laura</au><au>Montgomery, David</au><au>Krishnan, Amita</au><au>Deva Kannan Ramanan</au><au>Rodriguez, Ricardo Luis</au><au>deBoisblanc, Bennett P</au><au>Galeotti, John Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks</atitle><jtitle>arXiv.org</jtitle><date>2022-06-16</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Contemporary artificial neural networks (ANN) are trained end-to-end, jointly learning both features and classifiers for the task of interest. Though enormously effective, this paradigm imposes significant costs in assembling annotated task-specific datasets and training large-scale networks. We propose to decouple feature learning from downstream lung ultrasound tasks by introducing an auxiliary pre-task of visual biomarker classification. We demonstrate that one can learn an informative, concise, and interpretable feature space from ultrasound videos by training models for predicting biomarker labels. Notably, biomarker feature extractors can be trained from data annotated with weak video-scale supervision. These features can be used by a variety of downstream Expert models targeted for diverse clinical tasks (Diagnosis, lung severity, S/F ratio). Crucially, task-specific expert models are comparable in accuracy to end-to-end models directly trained for such target tasks, while being significantly lower cost to train.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2678581597 |
source | Free E- Journals |
subjects | Artificial neural networks Biomarkers Decoupling Feature extraction Lungs Machine learning Model accuracy Training Visual tasks |
title | Learning Generic Lung Ultrasound Biomarkers for Decoupling Feature Extraction from Downstream Tasks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20Generic%20Lung%20Ultrasound%20Biomarkers%20for%20Decoupling%20Feature%20Extraction%20from%20Downstream%20Tasks&rft.jtitle=arXiv.org&rft.au=Gare,%20Gautam%20Rajendrakumar&rft.date=2022-06-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2678581597%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678581597&rft_id=info:pmid/&rfr_iscdi=true |