Parameter Identification with a New Recursive Framework for Wiener–Hammerstein-Like System and Its Application
In the process of actual system modeling, many systems exhibit nonlinear characteristics with memory. Thus, the parameter identification problem of the nonlinear system with memory usually appears in the system modeling. This report focuses on the nonlinear system identification of Wiener–Hammerstei...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022-06, Vol.2022, p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Liang, Shujun Zhang, Huanlong Zhang, Jie Wang, Fengxian |
description | In the process of actual system modeling, many systems exhibit nonlinear characteristics with memory. Thus, the parameter identification problem of the nonlinear system with memory usually appears in the system modeling. This report focuses on the nonlinear system identification of Wiener–Hammerstein-like model with memory hysteresis, in which a new recursive estimation way is introduced. In this algorithm, the estimation bias problem can be improved by introducing a data filtering technique. On the basis of the filtered data, some auxiliary matrices and vectors are proposed. Following this, the identification error variable is introduced by using auxiliary matrices and vectors with an adaptive forgetting factor. Afterward, the identification error variable is integrated into the design of parameter estimation adaptive law with recursive gain structure. By comparison with the classic estimation methods, the proposed algorithm shows an alternative identification algorithm design angle. In addition, it is strictly proved that the parameter estimation error converges to zero under a general excitation condition. Based on the results of indices MSE, compared with the existing methods, the performance improvements of the proposed method are 33.9 %, 41.26%, and 53.5%, respectively. In terms of indices PEM, the augmented performances of the developed scheme are 50%, 56.2%, and 68.4%, respectively, in comparison to the available schemes. |
doi_str_mv | 10.1155/2022/2245781 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2678216996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678216996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-1744d2326c2481f2e847f6cc91bab3ad9c3337d253c1fbf0a1122b663831d3b73</originalsourceid><addsrcrecordid>eNp90M1Kw0AQB_BFFKzVmw-w4FFjM7PJJjmWYm2hqPiB3sJms0u3bT7c3Vp68x18Q5_ElPbsaWbgx3_gT8glhLcAcTzAEHGAGMVJCkekBzFnQQxRctztIUYBIPs4JWfOLcIQIYa0R9onYUWlvLJ0WqraG22k8Kap6cb4ORX0QW3os5Jr68yXouMd3jR2SXVj6btRtbK_3z8TUVXKOq9MHczMUtGXbXdUVNQlnXpHh227OuSekxMtVk5dHGafvI3vXkeTYPZ4Px0NZ4HELPIBJFFUIkMuMUpBo0qjRHMpMyhEwUSZScZYUmLMJOhChwIAseCcpQxKViSsT672ua1tPtfK-XzRrG3dvcyRJykCzzLeqZu9krZxziqdt9ZUwm5zCPNdp_mu0_zQacev93xu6lJszP_6D3L8d3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678216996</pqid></control><display><type>article</type><title>Parameter Identification with a New Recursive Framework for Wiener–Hammerstein-Like System and Its Application</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liang, Shujun ; Zhang, Huanlong ; Zhang, Jie ; Wang, Fengxian</creator><contributor>Morales, Rafael</contributor><creatorcontrib>Liang, Shujun ; Zhang, Huanlong ; Zhang, Jie ; Wang, Fengxian ; Morales, Rafael</creatorcontrib><description>In the process of actual system modeling, many systems exhibit nonlinear characteristics with memory. Thus, the parameter identification problem of the nonlinear system with memory usually appears in the system modeling. This report focuses on the nonlinear system identification of Wiener–Hammerstein-like model with memory hysteresis, in which a new recursive estimation way is introduced. In this algorithm, the estimation bias problem can be improved by introducing a data filtering technique. On the basis of the filtered data, some auxiliary matrices and vectors are proposed. Following this, the identification error variable is introduced by using auxiliary matrices and vectors with an adaptive forgetting factor. Afterward, the identification error variable is integrated into the design of parameter estimation adaptive law with recursive gain structure. By comparison with the classic estimation methods, the proposed algorithm shows an alternative identification algorithm design angle. In addition, it is strictly proved that the parameter estimation error converges to zero under a general excitation condition. Based on the results of indices MSE, compared with the existing methods, the performance improvements of the proposed method are 33.9 %, 41.26%, and 53.5%, respectively. In terms of indices PEM, the augmented performances of the developed scheme are 50%, 56.2%, and 68.4%, respectively, in comparison to the available schemes.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/2245781</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Bias ; Design parameters ; Errors ; Expected values ; Mathematical models ; Modelling ; Nonlinear systems ; Optimization ; Parameter estimation ; Parameter identification ; Scanners ; System identification</subject><ispartof>Mathematical problems in engineering, 2022-06, Vol.2022, p.1-14</ispartof><rights>Copyright © 2022 Shujun Liang et al.</rights><rights>Copyright © 2022 Shujun Liang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-1744d2326c2481f2e847f6cc91bab3ad9c3337d253c1fbf0a1122b663831d3b73</cites><orcidid>0000-0001-5946-8319 ; 0000-0002-8078-8621 ; 0000-0002-5130-5555 ; 0000-0002-3842-2853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Morales, Rafael</contributor><creatorcontrib>Liang, Shujun</creatorcontrib><creatorcontrib>Zhang, Huanlong</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wang, Fengxian</creatorcontrib><title>Parameter Identification with a New Recursive Framework for Wiener–Hammerstein-Like System and Its Application</title><title>Mathematical problems in engineering</title><description>In the process of actual system modeling, many systems exhibit nonlinear characteristics with memory. Thus, the parameter identification problem of the nonlinear system with memory usually appears in the system modeling. This report focuses on the nonlinear system identification of Wiener–Hammerstein-like model with memory hysteresis, in which a new recursive estimation way is introduced. In this algorithm, the estimation bias problem can be improved by introducing a data filtering technique. On the basis of the filtered data, some auxiliary matrices and vectors are proposed. Following this, the identification error variable is introduced by using auxiliary matrices and vectors with an adaptive forgetting factor. Afterward, the identification error variable is integrated into the design of parameter estimation adaptive law with recursive gain structure. By comparison with the classic estimation methods, the proposed algorithm shows an alternative identification algorithm design angle. In addition, it is strictly proved that the parameter estimation error converges to zero under a general excitation condition. Based on the results of indices MSE, compared with the existing methods, the performance improvements of the proposed method are 33.9 %, 41.26%, and 53.5%, respectively. In terms of indices PEM, the augmented performances of the developed scheme are 50%, 56.2%, and 68.4%, respectively, in comparison to the available schemes.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bias</subject><subject>Design parameters</subject><subject>Errors</subject><subject>Expected values</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Scanners</subject><subject>System identification</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp90M1Kw0AQB_BFFKzVmw-w4FFjM7PJJjmWYm2hqPiB3sJms0u3bT7c3Vp68x18Q5_ElPbsaWbgx3_gT8glhLcAcTzAEHGAGMVJCkekBzFnQQxRctztIUYBIPs4JWfOLcIQIYa0R9onYUWlvLJ0WqraG22k8Kap6cb4ORX0QW3os5Jr68yXouMd3jR2SXVj6btRtbK_3z8TUVXKOq9MHczMUtGXbXdUVNQlnXpHh227OuSekxMtVk5dHGafvI3vXkeTYPZ4Px0NZ4HELPIBJFFUIkMuMUpBo0qjRHMpMyhEwUSZScZYUmLMJOhChwIAseCcpQxKViSsT672ua1tPtfK-XzRrG3dvcyRJykCzzLeqZu9krZxziqdt9ZUwm5zCPNdp_mu0_zQacev93xu6lJszP_6D3L8d3A</recordid><startdate>20220608</startdate><enddate>20220608</enddate><creator>Liang, Shujun</creator><creator>Zhang, Huanlong</creator><creator>Zhang, Jie</creator><creator>Wang, Fengxian</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5946-8319</orcidid><orcidid>https://orcid.org/0000-0002-8078-8621</orcidid><orcidid>https://orcid.org/0000-0002-5130-5555</orcidid><orcidid>https://orcid.org/0000-0002-3842-2853</orcidid></search><sort><creationdate>20220608</creationdate><title>Parameter Identification with a New Recursive Framework for Wiener–Hammerstein-Like System and Its Application</title><author>Liang, Shujun ; Zhang, Huanlong ; Zhang, Jie ; Wang, Fengxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-1744d2326c2481f2e847f6cc91bab3ad9c3337d253c1fbf0a1122b663831d3b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bias</topic><topic>Design parameters</topic><topic>Errors</topic><topic>Expected values</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Scanners</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Shujun</creatorcontrib><creatorcontrib>Zhang, Huanlong</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wang, Fengxian</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Shujun</au><au>Zhang, Huanlong</au><au>Zhang, Jie</au><au>Wang, Fengxian</au><au>Morales, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Identification with a New Recursive Framework for Wiener–Hammerstein-Like System and Its Application</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-06-08</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In the process of actual system modeling, many systems exhibit nonlinear characteristics with memory. Thus, the parameter identification problem of the nonlinear system with memory usually appears in the system modeling. This report focuses on the nonlinear system identification of Wiener–Hammerstein-like model with memory hysteresis, in which a new recursive estimation way is introduced. In this algorithm, the estimation bias problem can be improved by introducing a data filtering technique. On the basis of the filtered data, some auxiliary matrices and vectors are proposed. Following this, the identification error variable is introduced by using auxiliary matrices and vectors with an adaptive forgetting factor. Afterward, the identification error variable is integrated into the design of parameter estimation adaptive law with recursive gain structure. By comparison with the classic estimation methods, the proposed algorithm shows an alternative identification algorithm design angle. In addition, it is strictly proved that the parameter estimation error converges to zero under a general excitation condition. Based on the results of indices MSE, compared with the existing methods, the performance improvements of the proposed method are 33.9 %, 41.26%, and 53.5%, respectively. In terms of indices PEM, the augmented performances of the developed scheme are 50%, 56.2%, and 68.4%, respectively, in comparison to the available schemes.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/2245781</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5946-8319</orcidid><orcidid>https://orcid.org/0000-0002-8078-8621</orcidid><orcidid>https://orcid.org/0000-0002-5130-5555</orcidid><orcidid>https://orcid.org/0000-0002-3842-2853</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022-06, Vol.2022, p.1-14 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2678216996 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Accuracy Algorithms Bias Design parameters Errors Expected values Mathematical models Modelling Nonlinear systems Optimization Parameter estimation Parameter identification Scanners System identification |
title | Parameter Identification with a New Recursive Framework for Wiener–Hammerstein-Like System and Its Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Identification%20with%20a%20New%20Recursive%20Framework%20for%20Wiener%E2%80%93Hammerstein-Like%20System%20and%20Its%20Application&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Liang,%20Shujun&rft.date=2022-06-08&rft.volume=2022&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/2245781&rft_dat=%3Cproquest_cross%3E2678216996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678216996&rft_id=info:pmid/&rfr_iscdi=true |