A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules

In this paper, an optimization tool based on a MILP model to support the teaching assignment process is proposed. It considers not only hierarchical issues among lecturers but also their preferences to teach a particular subject, the non-regular time schedules throughout the academic year, different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operational research 2022-07, Vol.22 (3), p.2899-2942
Hauptverfasser: Cutillas, P. Solano, Pérez-Perales, D., Díaz, M. M. E. Alemany
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2942
container_issue 3
container_start_page 2899
container_title Operational research
container_volume 22
creator Cutillas, P. Solano
Pérez-Perales, D.
Díaz, M. M. E. Alemany
description In this paper, an optimization tool based on a MILP model to support the teaching assignment process is proposed. It considers not only hierarchical issues among lecturers but also their preferences to teach a particular subject, the non-regular time schedules throughout the academic year, different type of credits, number of groups and other specific characteristics. Besides, it adds restrictions based on the time compatibility among the different subjects, the lecturers’ availability, the maximum number of subjects per lecturer, the maximum number of lecturers per subject as well as the maximum and minimum saturation level for each lecturer, all of them in order to increase the teaching quality. Schedules heterogeneity and other features regarding the operation of some universities justify the usefulness of this model since no study that deals with all of them has been found in the literature review. Model validation has been performed with two real data sets collected from one academic year schedule at the Spanish University Universitat Politècnica de València.
doi_str_mv 10.1007/s12351-021-00638-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2678131294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678131294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-ddd2fa814d497124141e1af0d4c81187f4a4f20bce351567ee93f18cf1ba932d3</originalsourceid><addsrcrecordid>eNp9kF9LxiAUh0cUFNUX6EroeuVRt7nLiP5B0E1di-lxr7Vp6Qb17fNtwXuXoB7w-Z2DT1WdAb0ASrvLDIw3UFNWNm25rGGvOgLZtjU0tNkvNdC-ZrKRh9Vpzm-0LM46KeRR9XVFJj1vsBze6JF8pDgkPU0-DGSOcSQuJqIDQee88RhmYtH47GOoJ_2-pWIgM2qz2dY6Zz-EaYstwWIioXAJh2XUicx-QpLNBu0yYj6pDpweM57-3cfVy-3N8_V9_fh093B99Vgb3sFcW2uZ0xKEFX0HTIAABO2oFUYCyM4JLRyjrwaLgqbtEHvuQBoHr7rnzPLj6nztW372uWCe1VtcUigjFWs7CRxYLwrFVsqkmHNCpz6Sn3T6VkDVVrJaJasiWf1KVlBCZA2hicHnXUQy1jesbVlB-Irk8hgGTLvp_zT-AXCIi0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678131294</pqid></control><display><type>article</type><title>A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cutillas, P. Solano ; Pérez-Perales, D. ; Díaz, M. M. E. Alemany</creator><creatorcontrib>Cutillas, P. Solano ; Pérez-Perales, D. ; Díaz, M. M. E. Alemany</creatorcontrib><description>In this paper, an optimization tool based on a MILP model to support the teaching assignment process is proposed. It considers not only hierarchical issues among lecturers but also their preferences to teach a particular subject, the non-regular time schedules throughout the academic year, different type of credits, number of groups and other specific characteristics. Besides, it adds restrictions based on the time compatibility among the different subjects, the lecturers’ availability, the maximum number of subjects per lecturer, the maximum number of lecturers per subject as well as the maximum and minimum saturation level for each lecturer, all of them in order to increase the teaching quality. Schedules heterogeneity and other features regarding the operation of some universities justify the usefulness of this model since no study that deals with all of them has been found in the literature review. Model validation has been performed with two real data sets collected from one academic year schedule at the Spanish University Universitat Politècnica de València.</description><identifier>ISSN: 1109-2858</identifier><identifier>EISSN: 1866-1505</identifier><identifier>DOI: 10.1007/s12351-021-00638-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Business and Management ; Computational Intelligence ; Decision making ; Heterogeneity ; Literature reviews ; Management Science ; Mathematical analysis ; Mathematical programming ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Original Paper ; Schedules ; Teaching</subject><ispartof>Operational research, 2022-07, Vol.22 (3), p.2899-2942</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-ddd2fa814d497124141e1af0d4c81187f4a4f20bce351567ee93f18cf1ba932d3</cites><orcidid>0000-0001-5149-3835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12351-021-00638-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12351-021-00638-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Cutillas, P. Solano</creatorcontrib><creatorcontrib>Pérez-Perales, D.</creatorcontrib><creatorcontrib>Díaz, M. M. E. Alemany</creatorcontrib><title>A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules</title><title>Operational research</title><addtitle>Oper Res Int J</addtitle><description>In this paper, an optimization tool based on a MILP model to support the teaching assignment process is proposed. It considers not only hierarchical issues among lecturers but also their preferences to teach a particular subject, the non-regular time schedules throughout the academic year, different type of credits, number of groups and other specific characteristics. Besides, it adds restrictions based on the time compatibility among the different subjects, the lecturers’ availability, the maximum number of subjects per lecturer, the maximum number of lecturers per subject as well as the maximum and minimum saturation level for each lecturer, all of them in order to increase the teaching quality. Schedules heterogeneity and other features regarding the operation of some universities justify the usefulness of this model since no study that deals with all of them has been found in the literature review. Model validation has been performed with two real data sets collected from one academic year schedule at the Spanish University Universitat Politècnica de València.</description><subject>Business and Management</subject><subject>Computational Intelligence</subject><subject>Decision making</subject><subject>Heterogeneity</subject><subject>Literature reviews</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>Mathematical programming</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Schedules</subject><subject>Teaching</subject><issn>1109-2858</issn><issn>1866-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kF9LxiAUh0cUFNUX6EroeuVRt7nLiP5B0E1di-lxr7Vp6Qb17fNtwXuXoB7w-Z2DT1WdAb0ASrvLDIw3UFNWNm25rGGvOgLZtjU0tNkvNdC-ZrKRh9Vpzm-0LM46KeRR9XVFJj1vsBze6JF8pDgkPU0-DGSOcSQuJqIDQee88RhmYtH47GOoJ_2-pWIgM2qz2dY6Zz-EaYstwWIioXAJh2XUicx-QpLNBu0yYj6pDpweM57-3cfVy-3N8_V9_fh093B99Vgb3sFcW2uZ0xKEFX0HTIAABO2oFUYCyM4JLRyjrwaLgqbtEHvuQBoHr7rnzPLj6nztW372uWCe1VtcUigjFWs7CRxYLwrFVsqkmHNCpz6Sn3T6VkDVVrJaJasiWf1KVlBCZA2hicHnXUQy1jesbVlB-Irk8hgGTLvp_zT-AXCIi0w</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Cutillas, P. Solano</creator><creator>Pérez-Perales, D.</creator><creator>Díaz, M. M. E. Alemany</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5149-3835</orcidid></search><sort><creationdate>20220701</creationdate><title>A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules</title><author>Cutillas, P. Solano ; Pérez-Perales, D. ; Díaz, M. M. E. Alemany</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-ddd2fa814d497124141e1af0d4c81187f4a4f20bce351567ee93f18cf1ba932d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Business and Management</topic><topic>Computational Intelligence</topic><topic>Decision making</topic><topic>Heterogeneity</topic><topic>Literature reviews</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>Mathematical programming</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Schedules</topic><topic>Teaching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cutillas, P. Solano</creatorcontrib><creatorcontrib>Pérez-Perales, D.</creatorcontrib><creatorcontrib>Díaz, M. M. E. Alemany</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cutillas, P. Solano</au><au>Pérez-Perales, D.</au><au>Díaz, M. M. E. Alemany</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules</atitle><jtitle>Operational research</jtitle><stitle>Oper Res Int J</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>22</volume><issue>3</issue><spage>2899</spage><epage>2942</epage><pages>2899-2942</pages><issn>1109-2858</issn><eissn>1866-1505</eissn><abstract>In this paper, an optimization tool based on a MILP model to support the teaching assignment process is proposed. It considers not only hierarchical issues among lecturers but also their preferences to teach a particular subject, the non-regular time schedules throughout the academic year, different type of credits, number of groups and other specific characteristics. Besides, it adds restrictions based on the time compatibility among the different subjects, the lecturers’ availability, the maximum number of subjects per lecturer, the maximum number of lecturers per subject as well as the maximum and minimum saturation level for each lecturer, all of them in order to increase the teaching quality. Schedules heterogeneity and other features regarding the operation of some universities justify the usefulness of this model since no study that deals with all of them has been found in the literature review. Model validation has been performed with two real data sets collected from one academic year schedule at the Spanish University Universitat Politècnica de València.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12351-021-00638-1</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0001-5149-3835</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1109-2858
ispartof Operational research, 2022-07, Vol.22 (3), p.2899-2942
issn 1109-2858
1866-1505
language eng
recordid cdi_proquest_journals_2678131294
source SpringerLink Journals - AutoHoldings
subjects Business and Management
Computational Intelligence
Decision making
Heterogeneity
Literature reviews
Management Science
Mathematical analysis
Mathematical programming
Operations Research
Operations Research/Decision Theory
Optimization
Original Paper
Schedules
Teaching
title A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20programming%20tool%20for%20an%20efficient%20decision-making%20on%20teaching%20assignment%20under%20non-regular%20time%20schedules&rft.jtitle=Operational%20research&rft.au=Cutillas,%20P.%20Solano&rft.date=2022-07-01&rft.volume=22&rft.issue=3&rft.spage=2899&rft.epage=2942&rft.pages=2899-2942&rft.issn=1109-2858&rft.eissn=1866-1505&rft_id=info:doi/10.1007/s12351-021-00638-1&rft_dat=%3Cproquest_cross%3E2678131294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678131294&rft_id=info:pmid/&rfr_iscdi=true