Functional Output Regression with Infimal Convolution: Exploring the Huber and \(\epsilon\)-insensitive Losses
The focus of the paper is functional output regression (FOR) with convoluted losses. While most existing work consider the square loss setting, we leverage extensions of the Huber and the \(\epsilon\)-insensitive loss (induced by infimal convolution) and propose a flexible framework capable of handl...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lambert, Alex Bouche, Dimitri Szabo, Zoltan d'Alché-Buc, Florence |
description | The focus of the paper is functional output regression (FOR) with convoluted losses. While most existing work consider the square loss setting, we leverage extensions of the Huber and the \(\epsilon\)-insensitive loss (induced by infimal convolution) and propose a flexible framework capable of handling various forms of outliers and sparsity in the FOR family. We derive computationally tractable algorithms relying on duality to tackle the resulting tasks in the context of vector-valued reproducing kernel Hilbert spaces. The efficiency of the approach is demonstrated and contrasted with the classical squared loss setting on both synthetic and real-world benchmarks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2677951947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677951947</sourcerecordid><originalsourceid>FETCH-proquest_journals_26779519473</originalsourceid><addsrcrecordid>eNqNjtEKAUEUhielCO9wyg0XW2vGWtxqN0opudzS4mA0zqw5M3h8qzyAq7--_7v4GqItlRpF07GULdFjvsVxLCepTBLVFpQHOnptqTSwCb4KHrZ4cchcM3hpf4UVnfW9vheWntaErzyH7F0Z6zRdwF8RluGADko6QTEosGJtLBXDSBMjsfb6ibC2zMhd0TyXhrH3247o59lusYwqZx8B2e9vNrg6hvd1YjpLRrNxqv6zPpNMSrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677951947</pqid></control><display><type>article</type><title>Functional Output Regression with Infimal Convolution: Exploring the Huber and \(\epsilon\)-insensitive Losses</title><source>Free E- Journals</source><creator>Lambert, Alex ; Bouche, Dimitri ; Szabo, Zoltan ; d'Alché-Buc, Florence</creator><creatorcontrib>Lambert, Alex ; Bouche, Dimitri ; Szabo, Zoltan ; d'Alché-Buc, Florence</creatorcontrib><description>The focus of the paper is functional output regression (FOR) with convoluted losses. While most existing work consider the square loss setting, we leverage extensions of the Huber and the \(\epsilon\)-insensitive loss (induced by infimal convolution) and propose a flexible framework capable of handling various forms of outliers and sparsity in the FOR family. We derive computationally tractable algorithms relying on duality to tackle the resulting tasks in the context of vector-valued reproducing kernel Hilbert spaces. The efficiency of the approach is demonstrated and contrasted with the classical squared loss setting on both synthetic and real-world benchmarks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Convolution ; Hilbert space</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lambert, Alex</creatorcontrib><creatorcontrib>Bouche, Dimitri</creatorcontrib><creatorcontrib>Szabo, Zoltan</creatorcontrib><creatorcontrib>d'Alché-Buc, Florence</creatorcontrib><title>Functional Output Regression with Infimal Convolution: Exploring the Huber and \(\epsilon\)-insensitive Losses</title><title>arXiv.org</title><description>The focus of the paper is functional output regression (FOR) with convoluted losses. While most existing work consider the square loss setting, we leverage extensions of the Huber and the \(\epsilon\)-insensitive loss (induced by infimal convolution) and propose a flexible framework capable of handling various forms of outliers and sparsity in the FOR family. We derive computationally tractable algorithms relying on duality to tackle the resulting tasks in the context of vector-valued reproducing kernel Hilbert spaces. The efficiency of the approach is demonstrated and contrasted with the classical squared loss setting on both synthetic and real-world benchmarks.</description><subject>Algorithms</subject><subject>Convolution</subject><subject>Hilbert space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjtEKAUEUhielCO9wyg0XW2vGWtxqN0opudzS4mA0zqw5M3h8qzyAq7--_7v4GqItlRpF07GULdFjvsVxLCepTBLVFpQHOnptqTSwCb4KHrZ4cchcM3hpf4UVnfW9vheWntaErzyH7F0Z6zRdwF8RluGADko6QTEosGJtLBXDSBMjsfb6ibC2zMhd0TyXhrH3247o59lusYwqZx8B2e9vNrg6hvd1YjpLRrNxqv6zPpNMSrg</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Lambert, Alex</creator><creator>Bouche, Dimitri</creator><creator>Szabo, Zoltan</creator><creator>d'Alché-Buc, Florence</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220616</creationdate><title>Functional Output Regression with Infimal Convolution: Exploring the Huber and \(\epsilon\)-insensitive Losses</title><author>Lambert, Alex ; Bouche, Dimitri ; Szabo, Zoltan ; d'Alché-Buc, Florence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26779519473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Convolution</topic><topic>Hilbert space</topic><toplevel>online_resources</toplevel><creatorcontrib>Lambert, Alex</creatorcontrib><creatorcontrib>Bouche, Dimitri</creatorcontrib><creatorcontrib>Szabo, Zoltan</creatorcontrib><creatorcontrib>d'Alché-Buc, Florence</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambert, Alex</au><au>Bouche, Dimitri</au><au>Szabo, Zoltan</au><au>d'Alché-Buc, Florence</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Functional Output Regression with Infimal Convolution: Exploring the Huber and \(\epsilon\)-insensitive Losses</atitle><jtitle>arXiv.org</jtitle><date>2022-06-16</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The focus of the paper is functional output regression (FOR) with convoluted losses. While most existing work consider the square loss setting, we leverage extensions of the Huber and the \(\epsilon\)-insensitive loss (induced by infimal convolution) and propose a flexible framework capable of handling various forms of outliers and sparsity in the FOR family. We derive computationally tractable algorithms relying on duality to tackle the resulting tasks in the context of vector-valued reproducing kernel Hilbert spaces. The efficiency of the approach is demonstrated and contrasted with the classical squared loss setting on both synthetic and real-world benchmarks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2677951947 |
source | Free E- Journals |
subjects | Algorithms Convolution Hilbert space |
title | Functional Output Regression with Infimal Convolution: Exploring the Huber and \(\epsilon\)-insensitive Losses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Functional%20Output%20Regression%20with%20Infimal%20Convolution:%20Exploring%20the%20Huber%20and%20%5C(%5Cepsilon%5C)-insensitive%20Losses&rft.jtitle=arXiv.org&rft.au=Lambert,%20Alex&rft.date=2022-06-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2677951947%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677951947&rft_id=info:pmid/&rfr_iscdi=true |