Magnesium Ions Direct the Solid‐State Transformation of Amorphous Calcium Carbonate Thin Films to Aragonite, Magnesium‐Calcite, or Dolomite

Amorphous calcium carbonate (ACC) is a common precursor to crystalline calcium carbonate, and is of particular importance in biomineralization, where its crystallization in privileged environments ensures a pseudomorphic transformation. While organisms regulate this process using organic molecules a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-06, Vol.32 (25), p.n/a
Hauptverfasser: Zhang, Shuheng, Nahi, Ouassef, Chen, Li, Aslam, Zabeada, Kapur, Nikil, Kim, Yi‐Yeoun, Meldrum, Fiona C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced functional materials
container_volume 32
creator Zhang, Shuheng
Nahi, Ouassef
Chen, Li
Aslam, Zabeada
Kapur, Nikil
Kim, Yi‐Yeoun
Meldrum, Fiona C.
description Amorphous calcium carbonate (ACC) is a common precursor to crystalline calcium carbonate, and is of particular importance in biomineralization, where its crystallization in privileged environments ensures a pseudomorphic transformation. While organisms regulate this process using organic molecules and magnesium ions to selectively form calcite or aragonite, it has proven highly challenging to replicate this polymorph selectivity synthetically. Here, it is demonstrated that remarkable control can be achieved over the chemical composition and structure of crystalline calcium carbonate by using heat to drive a pseudomorphic transformation of ACC thin films. The crystal polymorph can be tuned from low magnesium‐calcite to pure aragonite, high magnesium‐calcite, and ultimately dolomite according to the magnesium content of the ACC, and mosaics of large single crystals are generated at elevated temperatures rather than the spherulitic structures formed at room temperature. This methodology also enables an in situ investigation of the ACC crystallization mechanism using transmission electron microscopy. Finally, the approach can be combined with templating methods to generate arrays of large aragonite single crystals with preselected morphologies. These results demonstrate that exceptional control can be achieved through the solid‐state transformation of Mg‐ACC, which has relevance to both synthetic and biological systems. Exceptional control over CaCO3 crystallization is achieved by transforming amorphous calcium carbonate (ACC) containing magnesium ions under solid state conditions, generating mosaics of large single crystals of low magnesian calcite, aragonite, high magnesian calcite, and ultimately dolomite according to the magnesium content and heating regime employed. This methodology also enables the transformation of ACC to be visualized using electron microscopy.
doi_str_mv 10.1002/adfm.202201394
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2677945047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677945047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4234-725e1c19168cce0c685d304289c89e532229756df65e9f6b338e536953868fc03</originalsourceid><addsrcrecordid>eNqFkLtOwzAYhSMEElBYmS2xkuJL4sRjlFKo1IqhRWKLXMdpXSV2sR2hbrwBPCNPQtKiMjL9F33nHOkEwQ2CQwQhvudl1QwxxBgiwqKT4AJRREMCcXp63NHreXDp3AZClCQkugg-Z3ylpVNtAyZGOzBSVgoP_FqCualV-f3xNffcS7CwXLvK2IZ7ZTQwFcgaY7dr0zqQ81r0Djm3S6P39FppMFZ144A3ILN8ZbTy8g4c4zrjvax_GgtGpjZNd1wFZxWvnbz-nYPgZfywyJ_C6fPjJM-moYgwicIExxIJxBBNhZBQ0DQuCYxwykTKZEwwxiyJaVnRWLKKLglJuy9lMUlpWglIBsHtwXdrzVsrnS82prW6iywwTRIWxTBKOmp4oIQ1zllZFVurGm53BYJFX3rRl14cS-8E7CB4V7Xc_UMX2Wg8-9P-AHn_iEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677945047</pqid></control><display><type>article</type><title>Magnesium Ions Direct the Solid‐State Transformation of Amorphous Calcium Carbonate Thin Films to Aragonite, Magnesium‐Calcite, or Dolomite</title><source>Access via Wiley Online Library</source><creator>Zhang, Shuheng ; Nahi, Ouassef ; Chen, Li ; Aslam, Zabeada ; Kapur, Nikil ; Kim, Yi‐Yeoun ; Meldrum, Fiona C.</creator><creatorcontrib>Zhang, Shuheng ; Nahi, Ouassef ; Chen, Li ; Aslam, Zabeada ; Kapur, Nikil ; Kim, Yi‐Yeoun ; Meldrum, Fiona C.</creatorcontrib><description>Amorphous calcium carbonate (ACC) is a common precursor to crystalline calcium carbonate, and is of particular importance in biomineralization, where its crystallization in privileged environments ensures a pseudomorphic transformation. While organisms regulate this process using organic molecules and magnesium ions to selectively form calcite or aragonite, it has proven highly challenging to replicate this polymorph selectivity synthetically. Here, it is demonstrated that remarkable control can be achieved over the chemical composition and structure of crystalline calcium carbonate by using heat to drive a pseudomorphic transformation of ACC thin films. The crystal polymorph can be tuned from low magnesium‐calcite to pure aragonite, high magnesium‐calcite, and ultimately dolomite according to the magnesium content of the ACC, and mosaics of large single crystals are generated at elevated temperatures rather than the spherulitic structures formed at room temperature. This methodology also enables an in situ investigation of the ACC crystallization mechanism using transmission electron microscopy. Finally, the approach can be combined with templating methods to generate arrays of large aragonite single crystals with preselected morphologies. These results demonstrate that exceptional control can be achieved through the solid‐state transformation of Mg‐ACC, which has relevance to both synthetic and biological systems. Exceptional control over CaCO3 crystallization is achieved by transforming amorphous calcium carbonate (ACC) containing magnesium ions under solid state conditions, generating mosaics of large single crystals of low magnesian calcite, aragonite, high magnesian calcite, and ultimately dolomite according to the magnesium content and heating regime employed. This methodology also enables the transformation of ACC to be visualized using electron microscopy.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202201394</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>ACC ; Aragonite ; Calcite ; Calcium carbonate ; Chemical composition ; Crystal structure ; Crystallinity ; Crystallization ; Dolomite ; High temperature ; magnesian calcite ; Magnesium ; Materials science ; Organic chemistry ; Room temperature ; Selectivity ; Single crystals ; Thin films ; Transformations</subject><ispartof>Advanced functional materials, 2022-06, Vol.32 (25), p.n/a</ispartof><rights>2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4234-725e1c19168cce0c685d304289c89e532229756df65e9f6b338e536953868fc03</citedby><cites>FETCH-LOGICAL-c4234-725e1c19168cce0c685d304289c89e532229756df65e9f6b338e536953868fc03</cites><orcidid>0000-0002-8503-4554 ; 0000-0001-9243-8517 ; 0000-0001-5277-249X ; 0000-0002-5752-4329 ; 0000-0003-1041-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202201394$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202201394$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Shuheng</creatorcontrib><creatorcontrib>Nahi, Ouassef</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Aslam, Zabeada</creatorcontrib><creatorcontrib>Kapur, Nikil</creatorcontrib><creatorcontrib>Kim, Yi‐Yeoun</creatorcontrib><creatorcontrib>Meldrum, Fiona C.</creatorcontrib><title>Magnesium Ions Direct the Solid‐State Transformation of Amorphous Calcium Carbonate Thin Films to Aragonite, Magnesium‐Calcite, or Dolomite</title><title>Advanced functional materials</title><description>Amorphous calcium carbonate (ACC) is a common precursor to crystalline calcium carbonate, and is of particular importance in biomineralization, where its crystallization in privileged environments ensures a pseudomorphic transformation. While organisms regulate this process using organic molecules and magnesium ions to selectively form calcite or aragonite, it has proven highly challenging to replicate this polymorph selectivity synthetically. Here, it is demonstrated that remarkable control can be achieved over the chemical composition and structure of crystalline calcium carbonate by using heat to drive a pseudomorphic transformation of ACC thin films. The crystal polymorph can be tuned from low magnesium‐calcite to pure aragonite, high magnesium‐calcite, and ultimately dolomite according to the magnesium content of the ACC, and mosaics of large single crystals are generated at elevated temperatures rather than the spherulitic structures formed at room temperature. This methodology also enables an in situ investigation of the ACC crystallization mechanism using transmission electron microscopy. Finally, the approach can be combined with templating methods to generate arrays of large aragonite single crystals with preselected morphologies. These results demonstrate that exceptional control can be achieved through the solid‐state transformation of Mg‐ACC, which has relevance to both synthetic and biological systems. Exceptional control over CaCO3 crystallization is achieved by transforming amorphous calcium carbonate (ACC) containing magnesium ions under solid state conditions, generating mosaics of large single crystals of low magnesian calcite, aragonite, high magnesian calcite, and ultimately dolomite according to the magnesium content and heating regime employed. This methodology also enables the transformation of ACC to be visualized using electron microscopy.</description><subject>ACC</subject><subject>Aragonite</subject><subject>Calcite</subject><subject>Calcium carbonate</subject><subject>Chemical composition</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Dolomite</subject><subject>High temperature</subject><subject>magnesian calcite</subject><subject>Magnesium</subject><subject>Materials science</subject><subject>Organic chemistry</subject><subject>Room temperature</subject><subject>Selectivity</subject><subject>Single crystals</subject><subject>Thin films</subject><subject>Transformations</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLtOwzAYhSMEElBYmS2xkuJL4sRjlFKo1IqhRWKLXMdpXSV2sR2hbrwBPCNPQtKiMjL9F33nHOkEwQ2CQwQhvudl1QwxxBgiwqKT4AJRREMCcXp63NHreXDp3AZClCQkugg-Z3ylpVNtAyZGOzBSVgoP_FqCualV-f3xNffcS7CwXLvK2IZ7ZTQwFcgaY7dr0zqQ81r0Djm3S6P39FppMFZ144A3ILN8ZbTy8g4c4zrjvax_GgtGpjZNd1wFZxWvnbz-nYPgZfywyJ_C6fPjJM-moYgwicIExxIJxBBNhZBQ0DQuCYxwykTKZEwwxiyJaVnRWLKKLglJuy9lMUlpWglIBsHtwXdrzVsrnS82prW6iywwTRIWxTBKOmp4oIQ1zllZFVurGm53BYJFX3rRl14cS-8E7CB4V7Xc_UMX2Wg8-9P-AHn_iEM</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zhang, Shuheng</creator><creator>Nahi, Ouassef</creator><creator>Chen, Li</creator><creator>Aslam, Zabeada</creator><creator>Kapur, Nikil</creator><creator>Kim, Yi‐Yeoun</creator><creator>Meldrum, Fiona C.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8503-4554</orcidid><orcidid>https://orcid.org/0000-0001-9243-8517</orcidid><orcidid>https://orcid.org/0000-0001-5277-249X</orcidid><orcidid>https://orcid.org/0000-0002-5752-4329</orcidid><orcidid>https://orcid.org/0000-0003-1041-8390</orcidid></search><sort><creationdate>20220601</creationdate><title>Magnesium Ions Direct the Solid‐State Transformation of Amorphous Calcium Carbonate Thin Films to Aragonite, Magnesium‐Calcite, or Dolomite</title><author>Zhang, Shuheng ; Nahi, Ouassef ; Chen, Li ; Aslam, Zabeada ; Kapur, Nikil ; Kim, Yi‐Yeoun ; Meldrum, Fiona C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4234-725e1c19168cce0c685d304289c89e532229756df65e9f6b338e536953868fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ACC</topic><topic>Aragonite</topic><topic>Calcite</topic><topic>Calcium carbonate</topic><topic>Chemical composition</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Dolomite</topic><topic>High temperature</topic><topic>magnesian calcite</topic><topic>Magnesium</topic><topic>Materials science</topic><topic>Organic chemistry</topic><topic>Room temperature</topic><topic>Selectivity</topic><topic>Single crystals</topic><topic>Thin films</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuheng</creatorcontrib><creatorcontrib>Nahi, Ouassef</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Aslam, Zabeada</creatorcontrib><creatorcontrib>Kapur, Nikil</creatorcontrib><creatorcontrib>Kim, Yi‐Yeoun</creatorcontrib><creatorcontrib>Meldrum, Fiona C.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuheng</au><au>Nahi, Ouassef</au><au>Chen, Li</au><au>Aslam, Zabeada</au><au>Kapur, Nikil</au><au>Kim, Yi‐Yeoun</au><au>Meldrum, Fiona C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnesium Ions Direct the Solid‐State Transformation of Amorphous Calcium Carbonate Thin Films to Aragonite, Magnesium‐Calcite, or Dolomite</atitle><jtitle>Advanced functional materials</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>25</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Amorphous calcium carbonate (ACC) is a common precursor to crystalline calcium carbonate, and is of particular importance in biomineralization, where its crystallization in privileged environments ensures a pseudomorphic transformation. While organisms regulate this process using organic molecules and magnesium ions to selectively form calcite or aragonite, it has proven highly challenging to replicate this polymorph selectivity synthetically. Here, it is demonstrated that remarkable control can be achieved over the chemical composition and structure of crystalline calcium carbonate by using heat to drive a pseudomorphic transformation of ACC thin films. The crystal polymorph can be tuned from low magnesium‐calcite to pure aragonite, high magnesium‐calcite, and ultimately dolomite according to the magnesium content of the ACC, and mosaics of large single crystals are generated at elevated temperatures rather than the spherulitic structures formed at room temperature. This methodology also enables an in situ investigation of the ACC crystallization mechanism using transmission electron microscopy. Finally, the approach can be combined with templating methods to generate arrays of large aragonite single crystals with preselected morphologies. These results demonstrate that exceptional control can be achieved through the solid‐state transformation of Mg‐ACC, which has relevance to both synthetic and biological systems. Exceptional control over CaCO3 crystallization is achieved by transforming amorphous calcium carbonate (ACC) containing magnesium ions under solid state conditions, generating mosaics of large single crystals of low magnesian calcite, aragonite, high magnesian calcite, and ultimately dolomite according to the magnesium content and heating regime employed. This methodology also enables the transformation of ACC to be visualized using electron microscopy.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202201394</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8503-4554</orcidid><orcidid>https://orcid.org/0000-0001-9243-8517</orcidid><orcidid>https://orcid.org/0000-0001-5277-249X</orcidid><orcidid>https://orcid.org/0000-0002-5752-4329</orcidid><orcidid>https://orcid.org/0000-0003-1041-8390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-06, Vol.32 (25), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2677945047
source Access via Wiley Online Library
subjects ACC
Aragonite
Calcite
Calcium carbonate
Chemical composition
Crystal structure
Crystallinity
Crystallization
Dolomite
High temperature
magnesian calcite
Magnesium
Materials science
Organic chemistry
Room temperature
Selectivity
Single crystals
Thin films
Transformations
title Magnesium Ions Direct the Solid‐State Transformation of Amorphous Calcium Carbonate Thin Films to Aragonite, Magnesium‐Calcite, or Dolomite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnesium%20Ions%20Direct%20the%20Solid%E2%80%90State%20Transformation%20of%20Amorphous%20Calcium%20Carbonate%20Thin%20Films%20to%20Aragonite,%20Magnesium%E2%80%90Calcite,%20or%20Dolomite&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Shuheng&rft.date=2022-06-01&rft.volume=32&rft.issue=25&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202201394&rft_dat=%3Cproquest_cross%3E2677945047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677945047&rft_id=info:pmid/&rfr_iscdi=true