Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7
In recent years, a number of new scintillator materials with improved energy resolution for gamma-ray detectors have become commercially available for use in terrestrial-based homeland security applications, and some are being incorporated into instrumentation for space. Unlike terrestrial applicati...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2022-06, Vol.69 (6), p.1322-1330 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1330 |
---|---|
container_issue | 6 |
container_start_page | 1322 |
container_title | IEEE transactions on nuclear science |
container_volume | 69 |
creator | Mitchell, Lee J. Perea, Rose Phlips, Bernard F. Woolf, Richard S. Hutcheson, Anthony L. Johnson-Rambert, Mary V. |
description | In recent years, a number of new scintillator materials with improved energy resolution for gamma-ray detectors have become commercially available for use in terrestrial-based homeland security applications, and some are being incorporated into instrumentation for space. Unlike terrestrial applications, the harsh environment of space-in particular, energetic trapped particles, cosmic rays, and neutrons-often activates these materials, and any improvement in sensitivity as a result of improved energy resolution could be offset by the additional background due to activation. The purpose of this work was to measure potential backgrounds due to trapped and cosmic-ray proton-induced activation in the new materials: SrI 2 :Eu (SrI), 7 Li-enriched Cs 2 LiYCl 6 :Ce (CLYC-7), Cs 2 LiLaBr 6 :Ce (CLLB), Cs 2 LiLa(Br,Cl) 6 :Ce (CLLBC), Tl 2 LiYCl 6 :Ce (TLYC), and Gd 3 (Al,Ga) 5 O 12 :Ce (GAGG). Using a large-diameter 64-MeV proton beam, detectors were irradiated with a total dose of 100 rad (Si), roughly equivalent to the annual dose in a typical low earth orbit. Measurements were made with a single 100% relative efficiency high-purity germanium (HPGe) (0.05-3 MeV) and the irradiated detector. Two multichannel analyzers (MCAs) operating in the event mode were used to collect the data. Time-tagged events were processed into various spectral integration times for analysis, and characteristic gamma-ray energies and decay times were used to identify activation products. Most of the identified activation products were the result of (p, xn) reactions, with a few exceptions. This work identifies the primary radioisotopes generated by energetic proton activation in six different scintillator materials. |
doi_str_mv | 10.1109/TNS.2022.3155721 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2677853004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9734760</ieee_id><sourcerecordid>2677853004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-fd2e6b12a0b5a09184a3acb69a937060c7cb77aa9e7d24f6c0d4ee0344b342ce3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFr02d_Ug2660GjYVYhdZDD7JsNhtIqdm62Sr-e1NSvMzMC8_MwIPQNYEpISDvVovllAKlU0biWFBygkb9kEYkFukpGgGQNJJcynN00XWbPvIY4hH6ePMuuDaat9Xe2ArPTGi-dWhci12NF_YHL03Thma71cF5_KKD9Y3edvd46ecTnM_yfIKzongYajbBq2KdHcI6i8QlOqt72F4d-xi9Pz2usueoeM3n2ayIDIUkRHVFbVISqqGMNUiScs20KROpJROQgBGmFEJraUVFeZ0YqLi1wDgvGafGsjG6He7uvPva2y6ojdv7tn-paCJEGjMA3lMwUMa7rvO2VjvffGr_qwiog0TVS1QHieoosV-5GVYaa-0_LgXjIgH2B72haYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677853004</pqid></control><display><type>article</type><title>Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7</title><source>IEEE Electronic Library (IEL)</source><creator>Mitchell, Lee J. ; Perea, Rose ; Phlips, Bernard F. ; Woolf, Richard S. ; Hutcheson, Anthony L. ; Johnson-Rambert, Mary V.</creator><creatorcontrib>Mitchell, Lee J. ; Perea, Rose ; Phlips, Bernard F. ; Woolf, Richard S. ; Hutcheson, Anthony L. ; Johnson-Rambert, Mary V.</creatorcontrib><description>In recent years, a number of new scintillator materials with improved energy resolution for gamma-ray detectors have become commercially available for use in terrestrial-based homeland security applications, and some are being incorporated into instrumentation for space. Unlike terrestrial applications, the harsh environment of space-in particular, energetic trapped particles, cosmic rays, and neutrons-often activates these materials, and any improvement in sensitivity as a result of improved energy resolution could be offset by the additional background due to activation. The purpose of this work was to measure potential backgrounds due to trapped and cosmic-ray proton-induced activation in the new materials: SrI 2 :Eu (SrI), 7 Li-enriched Cs 2 LiYCl 6 :Ce (CLYC-7), Cs 2 LiLaBr 6 :Ce (CLLB), Cs 2 LiLa(Br,Cl) 6 :Ce (CLLBC), Tl 2 LiYCl 6 :Ce (TLYC), and Gd 3 (Al,Ga) 5 O 12 :Ce (GAGG). Using a large-diameter 64-MeV proton beam, detectors were irradiated with a total dose of 100 rad (Si), roughly equivalent to the annual dose in a typical low earth orbit. Measurements were made with a single 100% relative efficiency high-purity germanium (HPGe) (0.05-3 MeV) and the irradiated detector. Two multichannel analyzers (MCAs) operating in the event mode were used to collect the data. Time-tagged events were processed into various spectral integration times for analysis, and characteristic gamma-ray energies and decay times were used to identify activation products. Most of the identified activation products were the result of (p, xn) reactions, with a few exceptions. This work identifies the primary radioisotopes generated by energetic proton activation in six different scintillator materials.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2022.3155721</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activation ; Analyzers ; astrophysics ; Cosmic radiation ; Cosmic rays ; Crystals ; Detectors ; Diameters ; Earth orbits ; Energy resolution ; Gamma ray detectors ; Gamma rays ; gamma-ray detector ; Germanium ; Instrumentation ; Instruments ; low earth orbit (LEO) ; Low earth orbits ; National security ; Neutrons ; proton ; Proton beams ; Protons ; radiation detector ; Radioisotopes ; Scintillation counters ; scintillator ; Scintillators ; space instrumentation ; Space vehicles ; Terrestrial environments ; Trapped particles</subject><ispartof>IEEE transactions on nuclear science, 2022-06, Vol.69 (6), p.1322-1330</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-fd2e6b12a0b5a09184a3acb69a937060c7cb77aa9e7d24f6c0d4ee0344b342ce3</citedby><cites>FETCH-LOGICAL-c206t-fd2e6b12a0b5a09184a3acb69a937060c7cb77aa9e7d24f6c0d4ee0344b342ce3</cites><orcidid>0000-0003-1016-2145 ; 0000-0003-4859-1711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9734760$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9734760$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mitchell, Lee J.</creatorcontrib><creatorcontrib>Perea, Rose</creatorcontrib><creatorcontrib>Phlips, Bernard F.</creatorcontrib><creatorcontrib>Woolf, Richard S.</creatorcontrib><creatorcontrib>Hutcheson, Anthony L.</creatorcontrib><creatorcontrib>Johnson-Rambert, Mary V.</creatorcontrib><title>Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>In recent years, a number of new scintillator materials with improved energy resolution for gamma-ray detectors have become commercially available for use in terrestrial-based homeland security applications, and some are being incorporated into instrumentation for space. Unlike terrestrial applications, the harsh environment of space-in particular, energetic trapped particles, cosmic rays, and neutrons-often activates these materials, and any improvement in sensitivity as a result of improved energy resolution could be offset by the additional background due to activation. The purpose of this work was to measure potential backgrounds due to trapped and cosmic-ray proton-induced activation in the new materials: SrI 2 :Eu (SrI), 7 Li-enriched Cs 2 LiYCl 6 :Ce (CLYC-7), Cs 2 LiLaBr 6 :Ce (CLLB), Cs 2 LiLa(Br,Cl) 6 :Ce (CLLBC), Tl 2 LiYCl 6 :Ce (TLYC), and Gd 3 (Al,Ga) 5 O 12 :Ce (GAGG). Using a large-diameter 64-MeV proton beam, detectors were irradiated with a total dose of 100 rad (Si), roughly equivalent to the annual dose in a typical low earth orbit. Measurements were made with a single 100% relative efficiency high-purity germanium (HPGe) (0.05-3 MeV) and the irradiated detector. Two multichannel analyzers (MCAs) operating in the event mode were used to collect the data. Time-tagged events were processed into various spectral integration times for analysis, and characteristic gamma-ray energies and decay times were used to identify activation products. Most of the identified activation products were the result of (p, xn) reactions, with a few exceptions. This work identifies the primary radioisotopes generated by energetic proton activation in six different scintillator materials.</description><subject>Activation</subject><subject>Analyzers</subject><subject>astrophysics</subject><subject>Cosmic radiation</subject><subject>Cosmic rays</subject><subject>Crystals</subject><subject>Detectors</subject><subject>Diameters</subject><subject>Earth orbits</subject><subject>Energy resolution</subject><subject>Gamma ray detectors</subject><subject>Gamma rays</subject><subject>gamma-ray detector</subject><subject>Germanium</subject><subject>Instrumentation</subject><subject>Instruments</subject><subject>low earth orbit (LEO)</subject><subject>Low earth orbits</subject><subject>National security</subject><subject>Neutrons</subject><subject>proton</subject><subject>Proton beams</subject><subject>Protons</subject><subject>radiation detector</subject><subject>Radioisotopes</subject><subject>Scintillation counters</subject><subject>scintillator</subject><subject>Scintillators</subject><subject>space instrumentation</subject><subject>Space vehicles</subject><subject>Terrestrial environments</subject><subject>Trapped particles</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFr02d_Ug2660GjYVYhdZDD7JsNhtIqdm62Sr-e1NSvMzMC8_MwIPQNYEpISDvVovllAKlU0biWFBygkb9kEYkFukpGgGQNJJcynN00XWbPvIY4hH6ePMuuDaat9Xe2ArPTGi-dWhci12NF_YHL03Thma71cF5_KKD9Y3edvd46ecTnM_yfIKzongYajbBq2KdHcI6i8QlOqt72F4d-xi9Pz2usueoeM3n2ayIDIUkRHVFbVISqqGMNUiScs20KROpJROQgBGmFEJraUVFeZ0YqLi1wDgvGafGsjG6He7uvPva2y6ojdv7tn-paCJEGjMA3lMwUMa7rvO2VjvffGr_qwiog0TVS1QHieoosV-5GVYaa-0_LgXjIgH2B72haYw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Mitchell, Lee J.</creator><creator>Perea, Rose</creator><creator>Phlips, Bernard F.</creator><creator>Woolf, Richard S.</creator><creator>Hutcheson, Anthony L.</creator><creator>Johnson-Rambert, Mary V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-1016-2145</orcidid><orcidid>https://orcid.org/0000-0003-4859-1711</orcidid></search><sort><creationdate>20220601</creationdate><title>Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7</title><author>Mitchell, Lee J. ; Perea, Rose ; Phlips, Bernard F. ; Woolf, Richard S. ; Hutcheson, Anthony L. ; Johnson-Rambert, Mary V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-fd2e6b12a0b5a09184a3acb69a937060c7cb77aa9e7d24f6c0d4ee0344b342ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activation</topic><topic>Analyzers</topic><topic>astrophysics</topic><topic>Cosmic radiation</topic><topic>Cosmic rays</topic><topic>Crystals</topic><topic>Detectors</topic><topic>Diameters</topic><topic>Earth orbits</topic><topic>Energy resolution</topic><topic>Gamma ray detectors</topic><topic>Gamma rays</topic><topic>gamma-ray detector</topic><topic>Germanium</topic><topic>Instrumentation</topic><topic>Instruments</topic><topic>low earth orbit (LEO)</topic><topic>Low earth orbits</topic><topic>National security</topic><topic>Neutrons</topic><topic>proton</topic><topic>Proton beams</topic><topic>Protons</topic><topic>radiation detector</topic><topic>Radioisotopes</topic><topic>Scintillation counters</topic><topic>scintillator</topic><topic>Scintillators</topic><topic>space instrumentation</topic><topic>Space vehicles</topic><topic>Terrestrial environments</topic><topic>Trapped particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchell, Lee J.</creatorcontrib><creatorcontrib>Perea, Rose</creatorcontrib><creatorcontrib>Phlips, Bernard F.</creatorcontrib><creatorcontrib>Woolf, Richard S.</creatorcontrib><creatorcontrib>Hutcheson, Anthony L.</creatorcontrib><creatorcontrib>Johnson-Rambert, Mary V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mitchell, Lee J.</au><au>Perea, Rose</au><au>Phlips, Bernard F.</au><au>Woolf, Richard S.</au><au>Hutcheson, Anthony L.</au><au>Johnson-Rambert, Mary V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>69</volume><issue>6</issue><spage>1322</spage><epage>1330</epage><pages>1322-1330</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>In recent years, a number of new scintillator materials with improved energy resolution for gamma-ray detectors have become commercially available for use in terrestrial-based homeland security applications, and some are being incorporated into instrumentation for space. Unlike terrestrial applications, the harsh environment of space-in particular, energetic trapped particles, cosmic rays, and neutrons-often activates these materials, and any improvement in sensitivity as a result of improved energy resolution could be offset by the additional background due to activation. The purpose of this work was to measure potential backgrounds due to trapped and cosmic-ray proton-induced activation in the new materials: SrI 2 :Eu (SrI), 7 Li-enriched Cs 2 LiYCl 6 :Ce (CLYC-7), Cs 2 LiLaBr 6 :Ce (CLLB), Cs 2 LiLa(Br,Cl) 6 :Ce (CLLBC), Tl 2 LiYCl 6 :Ce (TLYC), and Gd 3 (Al,Ga) 5 O 12 :Ce (GAGG). Using a large-diameter 64-MeV proton beam, detectors were irradiated with a total dose of 100 rad (Si), roughly equivalent to the annual dose in a typical low earth orbit. Measurements were made with a single 100% relative efficiency high-purity germanium (HPGe) (0.05-3 MeV) and the irradiated detector. Two multichannel analyzers (MCAs) operating in the event mode were used to collect the data. Time-tagged events were processed into various spectral integration times for analysis, and characteristic gamma-ray energies and decay times were used to identify activation products. Most of the identified activation products were the result of (p, xn) reactions, with a few exceptions. This work identifies the primary radioisotopes generated by energetic proton activation in six different scintillator materials.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2022.3155721</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1016-2145</orcidid><orcidid>https://orcid.org/0000-0003-4859-1711</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2022-06, Vol.69 (6), p.1322-1330 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_2677853004 |
source | IEEE Electronic Library (IEL) |
subjects | Activation Analyzers astrophysics Cosmic radiation Cosmic rays Crystals Detectors Diameters Earth orbits Energy resolution Gamma ray detectors Gamma rays gamma-ray detector Germanium Instrumentation Instruments low earth orbit (LEO) Low earth orbits National security Neutrons proton Proton beams Protons radiation detector Radioisotopes Scintillation counters scintillator Scintillators space instrumentation Space vehicles Terrestrial environments Trapped particles |
title | Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton-Induced%20Activation%20of%20New%20Scintillator%20Materials:%20SrI,%20GAGG,%20CLLB,%20CLLBC,%20TLYC,%20CLYC-7&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Mitchell,%20Lee%20J.&rft.date=2022-06-01&rft.volume=69&rft.issue=6&rft.spage=1322&rft.epage=1330&rft.pages=1322-1330&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2022.3155721&rft_dat=%3Cproquest_RIE%3E2677853004%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677853004&rft_id=info:pmid/&rft_ieee_id=9734760&rfr_iscdi=true |