Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7

In recent years, a number of new scintillator materials with improved energy resolution for gamma-ray detectors have become commercially available for use in terrestrial-based homeland security applications, and some are being incorporated into instrumentation for space. Unlike terrestrial applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2022-06, Vol.69 (6), p.1322-1330
Hauptverfasser: Mitchell, Lee J., Perea, Rose, Phlips, Bernard F., Woolf, Richard S., Hutcheson, Anthony L., Johnson-Rambert, Mary V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1330
container_issue 6
container_start_page 1322
container_title IEEE transactions on nuclear science
container_volume 69
creator Mitchell, Lee J.
Perea, Rose
Phlips, Bernard F.
Woolf, Richard S.
Hutcheson, Anthony L.
Johnson-Rambert, Mary V.
description In recent years, a number of new scintillator materials with improved energy resolution for gamma-ray detectors have become commercially available for use in terrestrial-based homeland security applications, and some are being incorporated into instrumentation for space. Unlike terrestrial applications, the harsh environment of space-in particular, energetic trapped particles, cosmic rays, and neutrons-often activates these materials, and any improvement in sensitivity as a result of improved energy resolution could be offset by the additional background due to activation. The purpose of this work was to measure potential backgrounds due to trapped and cosmic-ray proton-induced activation in the new materials: SrI 2 :Eu (SrI), 7 Li-enriched Cs 2 LiYCl 6 :Ce (CLYC-7), Cs 2 LiLaBr 6 :Ce (CLLB), Cs 2 LiLa(Br,Cl) 6 :Ce (CLLBC), Tl 2 LiYCl 6 :Ce (TLYC), and Gd 3 (Al,Ga) 5 O 12 :Ce (GAGG). Using a large-diameter 64-MeV proton beam, detectors were irradiated with a total dose of 100 rad (Si), roughly equivalent to the annual dose in a typical low earth orbit. Measurements were made with a single 100% relative efficiency high-purity germanium (HPGe) (0.05-3 MeV) and the irradiated detector. Two multichannel analyzers (MCAs) operating in the event mode were used to collect the data. Time-tagged events were processed into various spectral integration times for analysis, and characteristic gamma-ray energies and decay times were used to identify activation products. Most of the identified activation products were the result of (p, xn) reactions, with a few exceptions. This work identifies the primary radioisotopes generated by energetic proton activation in six different scintillator materials.
doi_str_mv 10.1109/TNS.2022.3155721
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2677853004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9734760</ieee_id><sourcerecordid>2677853004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-fd2e6b12a0b5a09184a3acb69a937060c7cb77aa9e7d24f6c0d4ee0344b342ce3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFr02d_Ug2660GjYVYhdZDD7JsNhtIqdm62Sr-e1NSvMzMC8_MwIPQNYEpISDvVovllAKlU0biWFBygkb9kEYkFukpGgGQNJJcynN00XWbPvIY4hH6ePMuuDaat9Xe2ArPTGi-dWhci12NF_YHL03Thma71cF5_KKD9Y3edvd46ecTnM_yfIKzongYajbBq2KdHcI6i8QlOqt72F4d-xi9Pz2usueoeM3n2ayIDIUkRHVFbVISqqGMNUiScs20KROpJROQgBGmFEJraUVFeZ0YqLi1wDgvGafGsjG6He7uvPva2y6ojdv7tn-paCJEGjMA3lMwUMa7rvO2VjvffGr_qwiog0TVS1QHieoosV-5GVYaa-0_LgXjIgH2B72haYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677853004</pqid></control><display><type>article</type><title>Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7</title><source>IEEE Electronic Library (IEL)</source><creator>Mitchell, Lee J. ; Perea, Rose ; Phlips, Bernard F. ; Woolf, Richard S. ; Hutcheson, Anthony L. ; Johnson-Rambert, Mary V.</creator><creatorcontrib>Mitchell, Lee J. ; Perea, Rose ; Phlips, Bernard F. ; Woolf, Richard S. ; Hutcheson, Anthony L. ; Johnson-Rambert, Mary V.</creatorcontrib><description>In recent years, a number of new scintillator materials with improved energy resolution for gamma-ray detectors have become commercially available for use in terrestrial-based homeland security applications, and some are being incorporated into instrumentation for space. Unlike terrestrial applications, the harsh environment of space-in particular, energetic trapped particles, cosmic rays, and neutrons-often activates these materials, and any improvement in sensitivity as a result of improved energy resolution could be offset by the additional background due to activation. The purpose of this work was to measure potential backgrounds due to trapped and cosmic-ray proton-induced activation in the new materials: SrI 2 :Eu (SrI), 7 Li-enriched Cs 2 LiYCl 6 :Ce (CLYC-7), Cs 2 LiLaBr 6 :Ce (CLLB), Cs 2 LiLa(Br,Cl) 6 :Ce (CLLBC), Tl 2 LiYCl 6 :Ce (TLYC), and Gd 3 (Al,Ga) 5 O 12 :Ce (GAGG). Using a large-diameter 64-MeV proton beam, detectors were irradiated with a total dose of 100 rad (Si), roughly equivalent to the annual dose in a typical low earth orbit. Measurements were made with a single 100% relative efficiency high-purity germanium (HPGe) (0.05-3 MeV) and the irradiated detector. Two multichannel analyzers (MCAs) operating in the event mode were used to collect the data. Time-tagged events were processed into various spectral integration times for analysis, and characteristic gamma-ray energies and decay times were used to identify activation products. Most of the identified activation products were the result of (p, xn) reactions, with a few exceptions. This work identifies the primary radioisotopes generated by energetic proton activation in six different scintillator materials.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2022.3155721</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activation ; Analyzers ; astrophysics ; Cosmic radiation ; Cosmic rays ; Crystals ; Detectors ; Diameters ; Earth orbits ; Energy resolution ; Gamma ray detectors ; Gamma rays ; gamma-ray detector ; Germanium ; Instrumentation ; Instruments ; low earth orbit (LEO) ; Low earth orbits ; National security ; Neutrons ; proton ; Proton beams ; Protons ; radiation detector ; Radioisotopes ; Scintillation counters ; scintillator ; Scintillators ; space instrumentation ; Space vehicles ; Terrestrial environments ; Trapped particles</subject><ispartof>IEEE transactions on nuclear science, 2022-06, Vol.69 (6), p.1322-1330</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-fd2e6b12a0b5a09184a3acb69a937060c7cb77aa9e7d24f6c0d4ee0344b342ce3</citedby><cites>FETCH-LOGICAL-c206t-fd2e6b12a0b5a09184a3acb69a937060c7cb77aa9e7d24f6c0d4ee0344b342ce3</cites><orcidid>0000-0003-1016-2145 ; 0000-0003-4859-1711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9734760$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9734760$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mitchell, Lee J.</creatorcontrib><creatorcontrib>Perea, Rose</creatorcontrib><creatorcontrib>Phlips, Bernard F.</creatorcontrib><creatorcontrib>Woolf, Richard S.</creatorcontrib><creatorcontrib>Hutcheson, Anthony L.</creatorcontrib><creatorcontrib>Johnson-Rambert, Mary V.</creatorcontrib><title>Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>In recent years, a number of new scintillator materials with improved energy resolution for gamma-ray detectors have become commercially available for use in terrestrial-based homeland security applications, and some are being incorporated into instrumentation for space. Unlike terrestrial applications, the harsh environment of space-in particular, energetic trapped particles, cosmic rays, and neutrons-often activates these materials, and any improvement in sensitivity as a result of improved energy resolution could be offset by the additional background due to activation. The purpose of this work was to measure potential backgrounds due to trapped and cosmic-ray proton-induced activation in the new materials: SrI 2 :Eu (SrI), 7 Li-enriched Cs 2 LiYCl 6 :Ce (CLYC-7), Cs 2 LiLaBr 6 :Ce (CLLB), Cs 2 LiLa(Br,Cl) 6 :Ce (CLLBC), Tl 2 LiYCl 6 :Ce (TLYC), and Gd 3 (Al,Ga) 5 O 12 :Ce (GAGG). Using a large-diameter 64-MeV proton beam, detectors were irradiated with a total dose of 100 rad (Si), roughly equivalent to the annual dose in a typical low earth orbit. Measurements were made with a single 100% relative efficiency high-purity germanium (HPGe) (0.05-3 MeV) and the irradiated detector. Two multichannel analyzers (MCAs) operating in the event mode were used to collect the data. Time-tagged events were processed into various spectral integration times for analysis, and characteristic gamma-ray energies and decay times were used to identify activation products. Most of the identified activation products were the result of (p, xn) reactions, with a few exceptions. This work identifies the primary radioisotopes generated by energetic proton activation in six different scintillator materials.</description><subject>Activation</subject><subject>Analyzers</subject><subject>astrophysics</subject><subject>Cosmic radiation</subject><subject>Cosmic rays</subject><subject>Crystals</subject><subject>Detectors</subject><subject>Diameters</subject><subject>Earth orbits</subject><subject>Energy resolution</subject><subject>Gamma ray detectors</subject><subject>Gamma rays</subject><subject>gamma-ray detector</subject><subject>Germanium</subject><subject>Instrumentation</subject><subject>Instruments</subject><subject>low earth orbit (LEO)</subject><subject>Low earth orbits</subject><subject>National security</subject><subject>Neutrons</subject><subject>proton</subject><subject>Proton beams</subject><subject>Protons</subject><subject>radiation detector</subject><subject>Radioisotopes</subject><subject>Scintillation counters</subject><subject>scintillator</subject><subject>Scintillators</subject><subject>space instrumentation</subject><subject>Space vehicles</subject><subject>Terrestrial environments</subject><subject>Trapped particles</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFr02d_Ug2660GjYVYhdZDD7JsNhtIqdm62Sr-e1NSvMzMC8_MwIPQNYEpISDvVovllAKlU0biWFBygkb9kEYkFukpGgGQNJJcynN00XWbPvIY4hH6ePMuuDaat9Xe2ArPTGi-dWhci12NF_YHL03Thma71cF5_KKD9Y3edvd46ecTnM_yfIKzongYajbBq2KdHcI6i8QlOqt72F4d-xi9Pz2usueoeM3n2ayIDIUkRHVFbVISqqGMNUiScs20KROpJROQgBGmFEJraUVFeZ0YqLi1wDgvGafGsjG6He7uvPva2y6ojdv7tn-paCJEGjMA3lMwUMa7rvO2VjvffGr_qwiog0TVS1QHieoosV-5GVYaa-0_LgXjIgH2B72haYw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Mitchell, Lee J.</creator><creator>Perea, Rose</creator><creator>Phlips, Bernard F.</creator><creator>Woolf, Richard S.</creator><creator>Hutcheson, Anthony L.</creator><creator>Johnson-Rambert, Mary V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-1016-2145</orcidid><orcidid>https://orcid.org/0000-0003-4859-1711</orcidid></search><sort><creationdate>20220601</creationdate><title>Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7</title><author>Mitchell, Lee J. ; Perea, Rose ; Phlips, Bernard F. ; Woolf, Richard S. ; Hutcheson, Anthony L. ; Johnson-Rambert, Mary V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-fd2e6b12a0b5a09184a3acb69a937060c7cb77aa9e7d24f6c0d4ee0344b342ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activation</topic><topic>Analyzers</topic><topic>astrophysics</topic><topic>Cosmic radiation</topic><topic>Cosmic rays</topic><topic>Crystals</topic><topic>Detectors</topic><topic>Diameters</topic><topic>Earth orbits</topic><topic>Energy resolution</topic><topic>Gamma ray detectors</topic><topic>Gamma rays</topic><topic>gamma-ray detector</topic><topic>Germanium</topic><topic>Instrumentation</topic><topic>Instruments</topic><topic>low earth orbit (LEO)</topic><topic>Low earth orbits</topic><topic>National security</topic><topic>Neutrons</topic><topic>proton</topic><topic>Proton beams</topic><topic>Protons</topic><topic>radiation detector</topic><topic>Radioisotopes</topic><topic>Scintillation counters</topic><topic>scintillator</topic><topic>Scintillators</topic><topic>space instrumentation</topic><topic>Space vehicles</topic><topic>Terrestrial environments</topic><topic>Trapped particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchell, Lee J.</creatorcontrib><creatorcontrib>Perea, Rose</creatorcontrib><creatorcontrib>Phlips, Bernard F.</creatorcontrib><creatorcontrib>Woolf, Richard S.</creatorcontrib><creatorcontrib>Hutcheson, Anthony L.</creatorcontrib><creatorcontrib>Johnson-Rambert, Mary V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mitchell, Lee J.</au><au>Perea, Rose</au><au>Phlips, Bernard F.</au><au>Woolf, Richard S.</au><au>Hutcheson, Anthony L.</au><au>Johnson-Rambert, Mary V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>69</volume><issue>6</issue><spage>1322</spage><epage>1330</epage><pages>1322-1330</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>In recent years, a number of new scintillator materials with improved energy resolution for gamma-ray detectors have become commercially available for use in terrestrial-based homeland security applications, and some are being incorporated into instrumentation for space. Unlike terrestrial applications, the harsh environment of space-in particular, energetic trapped particles, cosmic rays, and neutrons-often activates these materials, and any improvement in sensitivity as a result of improved energy resolution could be offset by the additional background due to activation. The purpose of this work was to measure potential backgrounds due to trapped and cosmic-ray proton-induced activation in the new materials: SrI 2 :Eu (SrI), 7 Li-enriched Cs 2 LiYCl 6 :Ce (CLYC-7), Cs 2 LiLaBr 6 :Ce (CLLB), Cs 2 LiLa(Br,Cl) 6 :Ce (CLLBC), Tl 2 LiYCl 6 :Ce (TLYC), and Gd 3 (Al,Ga) 5 O 12 :Ce (GAGG). Using a large-diameter 64-MeV proton beam, detectors were irradiated with a total dose of 100 rad (Si), roughly equivalent to the annual dose in a typical low earth orbit. Measurements were made with a single 100% relative efficiency high-purity germanium (HPGe) (0.05-3 MeV) and the irradiated detector. Two multichannel analyzers (MCAs) operating in the event mode were used to collect the data. Time-tagged events were processed into various spectral integration times for analysis, and characteristic gamma-ray energies and decay times were used to identify activation products. Most of the identified activation products were the result of (p, xn) reactions, with a few exceptions. This work identifies the primary radioisotopes generated by energetic proton activation in six different scintillator materials.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2022.3155721</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1016-2145</orcidid><orcidid>https://orcid.org/0000-0003-4859-1711</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2022-06, Vol.69 (6), p.1322-1330
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_journals_2677853004
source IEEE Electronic Library (IEL)
subjects Activation
Analyzers
astrophysics
Cosmic radiation
Cosmic rays
Crystals
Detectors
Diameters
Earth orbits
Energy resolution
Gamma ray detectors
Gamma rays
gamma-ray detector
Germanium
Instrumentation
Instruments
low earth orbit (LEO)
Low earth orbits
National security
Neutrons
proton
Proton beams
Protons
radiation detector
Radioisotopes
Scintillation counters
scintillator
Scintillators
space instrumentation
Space vehicles
Terrestrial environments
Trapped particles
title Proton-Induced Activation of New Scintillator Materials: SrI, GAGG, CLLB, CLLBC, TLYC, CLYC-7
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton-Induced%20Activation%20of%20New%20Scintillator%20Materials:%20SrI,%20GAGG,%20CLLB,%20CLLBC,%20TLYC,%20CLYC-7&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Mitchell,%20Lee%20J.&rft.date=2022-06-01&rft.volume=69&rft.issue=6&rft.spage=1322&rft.epage=1330&rft.pages=1322-1330&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2022.3155721&rft_dat=%3Cproquest_RIE%3E2677853004%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677853004&rft_id=info:pmid/&rft_ieee_id=9734760&rfr_iscdi=true