MSTCGAN: Multiscale Time Conditional Generative Adversarial Network for Long-Term Satellite Image Sequence Prediction
Satellite image sequence prediction is a crucial and challenging task. Previous studies leverage optical flow methods or existing deep learning methods on spatial-temporal sequence models for the task. However, they suffer from either oversimplified model assumptions or blurry predictions and sequen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-16 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Satellite image sequence prediction is a crucial and challenging task. Previous studies leverage optical flow methods or existing deep learning methods on spatial-temporal sequence models for the task. However, they suffer from either oversimplified model assumptions or blurry predictions and sequential error accumulation issue, for a long-term forecast requirement. In this article, we propose a novel multiscale time conditional generative adversarial network (MSTCGAN). To address the sequential error accumulation issue, MSTCGAN adopts a parallel prediction framework to produce the future image sequences by a one-hot time condition input. In addition, a powerful multiscale generator is designed with the multihead axial attention, which helps to carefully preserve the fine-grained details for appearance consistency. Moreover, we develop a temporal discriminator to address the blurry issue and maintain the motion consistency in prediction. Extensive experiments have been conducted on the FengYun-4A satellite dataset, and the results demonstrate the effectiveness and superiority of the proposed method over state-of-the-art approaches. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2022.3181279 |