Role of metastable austenite in the fatigue resistance of 304L stainless steel produced by laser-based powder bed fusion
The fatigue crack growth (FCG) behavior and fatigue strength of 304L stainless steel (SS) manufactured by the laser powder bed fusion (LB-PBF) process were investigated. Effect of build orientation, microstructure, and temperature--considering that the alloy undergoes temperature-dependent stress-in...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2022-03, Vol.837, p.142744, Article 142744 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 142744 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 837 |
creator | Kumar, Punit Jayaraj, R. Zhu, Zhiguang Narayan, R.L. Ramamurty, U. |
description | The fatigue crack growth (FCG) behavior and fatigue strength of 304L stainless steel (SS) manufactured by the laser powder bed fusion (LB-PBF) process were investigated. Effect of build orientation, microstructure, and temperature--considering that the alloy undergoes temperature-dependent stress-induced martensitic transformation (SIMT)--were determined. FCG rates were found to be broadly independent of the build orientation and microstructure, although it is reduced in shorter builds due to the presence of higher compressive residual stress in them. Microstructural investigations of the fatigue crack reveal that SIMT occurs at the crack tip of alloys tested at room temperature, whereas the same was negligible at 150 °C. SIMT induces dilatation and shear, which enhances crack closure and retards FCG rates at RT compared to that at 150 °C. Using the microstructural observations of the transformed zone, an estimate of the crack closure due to SIMT is provided. Finally, failure envelopes or the Kitagawa-Takahashi diagram was prepared for different temperatures to facilitate a damage tolerant design approach.
[Display omitted] |
doi_str_mv | 10.1016/j.msea.2022.142744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2677658102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509322001526</els_id><sourcerecordid>2677658102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-e5f4c511f62ed848d501ceaa198da20c13782ddd4f76ff835896c22916266d623</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz61JmqYteBHxHywIoueQJhNN6bZrkqr77U2tZy8z8-C9meGH0DklOSVUXHb5NoDKGWEsp5xVnB-gFa2rIuNNIQ7RijSMZiVpimN0EkJHCKGclCv0_Tz2gEeLtxBViKpNSk0hwuAiYDfg-A7YqujeJsAegkueQf8mCsI3OEk39BBCmgB6vPOjmTQY3O5xrwL4rE3V4N34ZcDjNo12Cm4cTtGRVX2As7--Rq93ty83D9nm6f7x5nqT6aLhMYPScl1SagUDU_PalIRqUIo2tVGMaFpUNTPGcFsJa-uirBuhGWuoYEIYwYo1ulj2ps8-JghRduPkh3RSMlFVoqwpmV1scWk_huDByp13W-X3khI5E5adnAnLmbBcCKfQ1RKC9P-nAy-DdpDoGOdBR2lG91_8B8z6hMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677658102</pqid></control><display><type>article</type><title>Role of metastable austenite in the fatigue resistance of 304L stainless steel produced by laser-based powder bed fusion</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kumar, Punit ; Jayaraj, R. ; Zhu, Zhiguang ; Narayan, R.L. ; Ramamurty, U.</creator><creatorcontrib>Kumar, Punit ; Jayaraj, R. ; Zhu, Zhiguang ; Narayan, R.L. ; Ramamurty, U.</creatorcontrib><description>The fatigue crack growth (FCG) behavior and fatigue strength of 304L stainless steel (SS) manufactured by the laser powder bed fusion (LB-PBF) process were investigated. Effect of build orientation, microstructure, and temperature--considering that the alloy undergoes temperature-dependent stress-induced martensitic transformation (SIMT)--were determined. FCG rates were found to be broadly independent of the build orientation and microstructure, although it is reduced in shorter builds due to the presence of higher compressive residual stress in them. Microstructural investigations of the fatigue crack reveal that SIMT occurs at the crack tip of alloys tested at room temperature, whereas the same was negligible at 150 °C. SIMT induces dilatation and shear, which enhances crack closure and retards FCG rates at RT compared to that at 150 °C. Using the microstructural observations of the transformed zone, an estimate of the crack closure due to SIMT is provided. Finally, failure envelopes or the Kitagawa-Takahashi diagram was prepared for different temperatures to facilitate a damage tolerant design approach.
[Display omitted]</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2022.142744</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Austenitic stainless steels ; Compressive properties ; Crack closure ; Crack propagation ; Crack tips ; Damage tolerance ; Fatigue ; Fatigue failure ; Fatigue strength ; Fracture mechanics ; Laser applications ; Martensitic transformations ; Metal fatigue ; Microstructure ; Orientation effects ; Powder bed fusion ; Powder beds ; Residual stress ; Room temperature ; Stainless steel ; Stress-induced martensitic transformation ; Temperature ; Temperature dependence</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-03, Vol.837, p.142744, Article 142744</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Mar 14, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-e5f4c511f62ed848d501ceaa198da20c13782ddd4f76ff835896c22916266d623</citedby><cites>FETCH-LOGICAL-c394t-e5f4c511f62ed848d501ceaa198da20c13782ddd4f76ff835896c22916266d623</cites><orcidid>0000-0003-2938-731X ; 0000-0003-3233-8279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2022.142744$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kumar, Punit</creatorcontrib><creatorcontrib>Jayaraj, R.</creatorcontrib><creatorcontrib>Zhu, Zhiguang</creatorcontrib><creatorcontrib>Narayan, R.L.</creatorcontrib><creatorcontrib>Ramamurty, U.</creatorcontrib><title>Role of metastable austenite in the fatigue resistance of 304L stainless steel produced by laser-based powder bed fusion</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The fatigue crack growth (FCG) behavior and fatigue strength of 304L stainless steel (SS) manufactured by the laser powder bed fusion (LB-PBF) process were investigated. Effect of build orientation, microstructure, and temperature--considering that the alloy undergoes temperature-dependent stress-induced martensitic transformation (SIMT)--were determined. FCG rates were found to be broadly independent of the build orientation and microstructure, although it is reduced in shorter builds due to the presence of higher compressive residual stress in them. Microstructural investigations of the fatigue crack reveal that SIMT occurs at the crack tip of alloys tested at room temperature, whereas the same was negligible at 150 °C. SIMT induces dilatation and shear, which enhances crack closure and retards FCG rates at RT compared to that at 150 °C. Using the microstructural observations of the transformed zone, an estimate of the crack closure due to SIMT is provided. Finally, failure envelopes or the Kitagawa-Takahashi diagram was prepared for different temperatures to facilitate a damage tolerant design approach.
[Display omitted]</description><subject>Austenitic stainless steels</subject><subject>Compressive properties</subject><subject>Crack closure</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Damage tolerance</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fatigue strength</subject><subject>Fracture mechanics</subject><subject>Laser applications</subject><subject>Martensitic transformations</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Orientation effects</subject><subject>Powder bed fusion</subject><subject>Powder beds</subject><subject>Residual stress</subject><subject>Room temperature</subject><subject>Stainless steel</subject><subject>Stress-induced martensitic transformation</subject><subject>Temperature</subject><subject>Temperature dependence</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz61JmqYteBHxHywIoueQJhNN6bZrkqr77U2tZy8z8-C9meGH0DklOSVUXHb5NoDKGWEsp5xVnB-gFa2rIuNNIQ7RijSMZiVpimN0EkJHCKGclCv0_Tz2gEeLtxBViKpNSk0hwuAiYDfg-A7YqujeJsAegkueQf8mCsI3OEk39BBCmgB6vPOjmTQY3O5xrwL4rE3V4N34ZcDjNo12Cm4cTtGRVX2As7--Rq93ty83D9nm6f7x5nqT6aLhMYPScl1SagUDU_PalIRqUIo2tVGMaFpUNTPGcFsJa-uirBuhGWuoYEIYwYo1ulj2ps8-JghRduPkh3RSMlFVoqwpmV1scWk_huDByp13W-X3khI5E5adnAnLmbBcCKfQ1RKC9P-nAy-DdpDoGOdBR2lG91_8B8z6hMk</recordid><startdate>20220314</startdate><enddate>20220314</enddate><creator>Kumar, Punit</creator><creator>Jayaraj, R.</creator><creator>Zhu, Zhiguang</creator><creator>Narayan, R.L.</creator><creator>Ramamurty, U.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2938-731X</orcidid><orcidid>https://orcid.org/0000-0003-3233-8279</orcidid></search><sort><creationdate>20220314</creationdate><title>Role of metastable austenite in the fatigue resistance of 304L stainless steel produced by laser-based powder bed fusion</title><author>Kumar, Punit ; Jayaraj, R. ; Zhu, Zhiguang ; Narayan, R.L. ; Ramamurty, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-e5f4c511f62ed848d501ceaa198da20c13782ddd4f76ff835896c22916266d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Austenitic stainless steels</topic><topic>Compressive properties</topic><topic>Crack closure</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Damage tolerance</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fatigue strength</topic><topic>Fracture mechanics</topic><topic>Laser applications</topic><topic>Martensitic transformations</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Orientation effects</topic><topic>Powder bed fusion</topic><topic>Powder beds</topic><topic>Residual stress</topic><topic>Room temperature</topic><topic>Stainless steel</topic><topic>Stress-induced martensitic transformation</topic><topic>Temperature</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Punit</creatorcontrib><creatorcontrib>Jayaraj, R.</creatorcontrib><creatorcontrib>Zhu, Zhiguang</creatorcontrib><creatorcontrib>Narayan, R.L.</creatorcontrib><creatorcontrib>Ramamurty, U.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Punit</au><au>Jayaraj, R.</au><au>Zhu, Zhiguang</au><au>Narayan, R.L.</au><au>Ramamurty, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of metastable austenite in the fatigue resistance of 304L stainless steel produced by laser-based powder bed fusion</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2022-03-14</date><risdate>2022</risdate><volume>837</volume><spage>142744</spage><pages>142744-</pages><artnum>142744</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The fatigue crack growth (FCG) behavior and fatigue strength of 304L stainless steel (SS) manufactured by the laser powder bed fusion (LB-PBF) process were investigated. Effect of build orientation, microstructure, and temperature--considering that the alloy undergoes temperature-dependent stress-induced martensitic transformation (SIMT)--were determined. FCG rates were found to be broadly independent of the build orientation and microstructure, although it is reduced in shorter builds due to the presence of higher compressive residual stress in them. Microstructural investigations of the fatigue crack reveal that SIMT occurs at the crack tip of alloys tested at room temperature, whereas the same was negligible at 150 °C. SIMT induces dilatation and shear, which enhances crack closure and retards FCG rates at RT compared to that at 150 °C. Using the microstructural observations of the transformed zone, an estimate of the crack closure due to SIMT is provided. Finally, failure envelopes or the Kitagawa-Takahashi diagram was prepared for different temperatures to facilitate a damage tolerant design approach.
[Display omitted]</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2022.142744</doi><orcidid>https://orcid.org/0000-0003-2938-731X</orcidid><orcidid>https://orcid.org/0000-0003-3233-8279</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-03, Vol.837, p.142744, Article 142744 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2677658102 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Austenitic stainless steels Compressive properties Crack closure Crack propagation Crack tips Damage tolerance Fatigue Fatigue failure Fatigue strength Fracture mechanics Laser applications Martensitic transformations Metal fatigue Microstructure Orientation effects Powder bed fusion Powder beds Residual stress Room temperature Stainless steel Stress-induced martensitic transformation Temperature Temperature dependence |
title | Role of metastable austenite in the fatigue resistance of 304L stainless steel produced by laser-based powder bed fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20metastable%20austenite%20in%20the%20fatigue%20resistance%20of%20304L%20stainless%20steel%20produced%20by%20laser-based%20powder%20bed%20fusion&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Kumar,%20Punit&rft.date=2022-03-14&rft.volume=837&rft.spage=142744&rft.pages=142744-&rft.artnum=142744&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2022.142744&rft_dat=%3Cproquest_cross%3E2677658102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677658102&rft_id=info:pmid/&rft_els_id=S0921509322001526&rfr_iscdi=true |