Role of metastable austenite in the fatigue resistance of 304L stainless steel produced by laser-based powder bed fusion

The fatigue crack growth (FCG) behavior and fatigue strength of 304L stainless steel (SS) manufactured by the laser powder bed fusion (LB-PBF) process were investigated. Effect of build orientation, microstructure, and temperature--considering that the alloy undergoes temperature-dependent stress-in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2022-03, Vol.837, p.142744, Article 142744
Hauptverfasser: Kumar, Punit, Jayaraj, R., Zhu, Zhiguang, Narayan, R.L., Ramamurty, U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 142744
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 837
creator Kumar, Punit
Jayaraj, R.
Zhu, Zhiguang
Narayan, R.L.
Ramamurty, U.
description The fatigue crack growth (FCG) behavior and fatigue strength of 304L stainless steel (SS) manufactured by the laser powder bed fusion (LB-PBF) process were investigated. Effect of build orientation, microstructure, and temperature--considering that the alloy undergoes temperature-dependent stress-induced martensitic transformation (SIMT)--were determined. FCG rates were found to be broadly independent of the build orientation and microstructure, although it is reduced in shorter builds due to the presence of higher compressive residual stress in them. Microstructural investigations of the fatigue crack reveal that SIMT occurs at the crack tip of alloys tested at room temperature, whereas the same was negligible at 150 °C. SIMT induces dilatation and shear, which enhances crack closure and retards FCG rates at RT compared to that at 150 °C. Using the microstructural observations of the transformed zone, an estimate of the crack closure due to SIMT is provided. Finally, failure envelopes or the Kitagawa-Takahashi diagram was prepared for different temperatures to facilitate a damage tolerant design approach. [Display omitted]
doi_str_mv 10.1016/j.msea.2022.142744
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2677658102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509322001526</els_id><sourcerecordid>2677658102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-e5f4c511f62ed848d501ceaa198da20c13782ddd4f76ff835896c22916266d623</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz61JmqYteBHxHywIoueQJhNN6bZrkqr77U2tZy8z8-C9meGH0DklOSVUXHb5NoDKGWEsp5xVnB-gFa2rIuNNIQ7RijSMZiVpimN0EkJHCKGclCv0_Tz2gEeLtxBViKpNSk0hwuAiYDfg-A7YqujeJsAegkueQf8mCsI3OEk39BBCmgB6vPOjmTQY3O5xrwL4rE3V4N34ZcDjNo12Cm4cTtGRVX2As7--Rq93ty83D9nm6f7x5nqT6aLhMYPScl1SagUDU_PalIRqUIo2tVGMaFpUNTPGcFsJa-uirBuhGWuoYEIYwYo1ulj2ps8-JghRduPkh3RSMlFVoqwpmV1scWk_huDByp13W-X3khI5E5adnAnLmbBcCKfQ1RKC9P-nAy-DdpDoGOdBR2lG91_8B8z6hMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677658102</pqid></control><display><type>article</type><title>Role of metastable austenite in the fatigue resistance of 304L stainless steel produced by laser-based powder bed fusion</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kumar, Punit ; Jayaraj, R. ; Zhu, Zhiguang ; Narayan, R.L. ; Ramamurty, U.</creator><creatorcontrib>Kumar, Punit ; Jayaraj, R. ; Zhu, Zhiguang ; Narayan, R.L. ; Ramamurty, U.</creatorcontrib><description>The fatigue crack growth (FCG) behavior and fatigue strength of 304L stainless steel (SS) manufactured by the laser powder bed fusion (LB-PBF) process were investigated. Effect of build orientation, microstructure, and temperature--considering that the alloy undergoes temperature-dependent stress-induced martensitic transformation (SIMT)--were determined. FCG rates were found to be broadly independent of the build orientation and microstructure, although it is reduced in shorter builds due to the presence of higher compressive residual stress in them. Microstructural investigations of the fatigue crack reveal that SIMT occurs at the crack tip of alloys tested at room temperature, whereas the same was negligible at 150 °C. SIMT induces dilatation and shear, which enhances crack closure and retards FCG rates at RT compared to that at 150 °C. Using the microstructural observations of the transformed zone, an estimate of the crack closure due to SIMT is provided. Finally, failure envelopes or the Kitagawa-Takahashi diagram was prepared for different temperatures to facilitate a damage tolerant design approach. [Display omitted]</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2022.142744</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Austenitic stainless steels ; Compressive properties ; Crack closure ; Crack propagation ; Crack tips ; Damage tolerance ; Fatigue ; Fatigue failure ; Fatigue strength ; Fracture mechanics ; Laser applications ; Martensitic transformations ; Metal fatigue ; Microstructure ; Orientation effects ; Powder bed fusion ; Powder beds ; Residual stress ; Room temperature ; Stainless steel ; Stress-induced martensitic transformation ; Temperature ; Temperature dependence</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2022-03, Vol.837, p.142744, Article 142744</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Mar 14, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-e5f4c511f62ed848d501ceaa198da20c13782ddd4f76ff835896c22916266d623</citedby><cites>FETCH-LOGICAL-c394t-e5f4c511f62ed848d501ceaa198da20c13782ddd4f76ff835896c22916266d623</cites><orcidid>0000-0003-2938-731X ; 0000-0003-3233-8279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2022.142744$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kumar, Punit</creatorcontrib><creatorcontrib>Jayaraj, R.</creatorcontrib><creatorcontrib>Zhu, Zhiguang</creatorcontrib><creatorcontrib>Narayan, R.L.</creatorcontrib><creatorcontrib>Ramamurty, U.</creatorcontrib><title>Role of metastable austenite in the fatigue resistance of 304L stainless steel produced by laser-based powder bed fusion</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The fatigue crack growth (FCG) behavior and fatigue strength of 304L stainless steel (SS) manufactured by the laser powder bed fusion (LB-PBF) process were investigated. Effect of build orientation, microstructure, and temperature--considering that the alloy undergoes temperature-dependent stress-induced martensitic transformation (SIMT)--were determined. FCG rates were found to be broadly independent of the build orientation and microstructure, although it is reduced in shorter builds due to the presence of higher compressive residual stress in them. Microstructural investigations of the fatigue crack reveal that SIMT occurs at the crack tip of alloys tested at room temperature, whereas the same was negligible at 150 °C. SIMT induces dilatation and shear, which enhances crack closure and retards FCG rates at RT compared to that at 150 °C. Using the microstructural observations of the transformed zone, an estimate of the crack closure due to SIMT is provided. Finally, failure envelopes or the Kitagawa-Takahashi diagram was prepared for different temperatures to facilitate a damage tolerant design approach. [Display omitted]</description><subject>Austenitic stainless steels</subject><subject>Compressive properties</subject><subject>Crack closure</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Damage tolerance</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fatigue strength</subject><subject>Fracture mechanics</subject><subject>Laser applications</subject><subject>Martensitic transformations</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Orientation effects</subject><subject>Powder bed fusion</subject><subject>Powder beds</subject><subject>Residual stress</subject><subject>Room temperature</subject><subject>Stainless steel</subject><subject>Stress-induced martensitic transformation</subject><subject>Temperature</subject><subject>Temperature dependence</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz61JmqYteBHxHywIoueQJhNN6bZrkqr77U2tZy8z8-C9meGH0DklOSVUXHb5NoDKGWEsp5xVnB-gFa2rIuNNIQ7RijSMZiVpimN0EkJHCKGclCv0_Tz2gEeLtxBViKpNSk0hwuAiYDfg-A7YqujeJsAegkueQf8mCsI3OEk39BBCmgB6vPOjmTQY3O5xrwL4rE3V4N34ZcDjNo12Cm4cTtGRVX2As7--Rq93ty83D9nm6f7x5nqT6aLhMYPScl1SagUDU_PalIRqUIo2tVGMaFpUNTPGcFsJa-uirBuhGWuoYEIYwYo1ulj2ps8-JghRduPkh3RSMlFVoqwpmV1scWk_huDByp13W-X3khI5E5adnAnLmbBcCKfQ1RKC9P-nAy-DdpDoGOdBR2lG91_8B8z6hMk</recordid><startdate>20220314</startdate><enddate>20220314</enddate><creator>Kumar, Punit</creator><creator>Jayaraj, R.</creator><creator>Zhu, Zhiguang</creator><creator>Narayan, R.L.</creator><creator>Ramamurty, U.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2938-731X</orcidid><orcidid>https://orcid.org/0000-0003-3233-8279</orcidid></search><sort><creationdate>20220314</creationdate><title>Role of metastable austenite in the fatigue resistance of 304L stainless steel produced by laser-based powder bed fusion</title><author>Kumar, Punit ; Jayaraj, R. ; Zhu, Zhiguang ; Narayan, R.L. ; Ramamurty, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-e5f4c511f62ed848d501ceaa198da20c13782ddd4f76ff835896c22916266d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Austenitic stainless steels</topic><topic>Compressive properties</topic><topic>Crack closure</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Damage tolerance</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fatigue strength</topic><topic>Fracture mechanics</topic><topic>Laser applications</topic><topic>Martensitic transformations</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Orientation effects</topic><topic>Powder bed fusion</topic><topic>Powder beds</topic><topic>Residual stress</topic><topic>Room temperature</topic><topic>Stainless steel</topic><topic>Stress-induced martensitic transformation</topic><topic>Temperature</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Punit</creatorcontrib><creatorcontrib>Jayaraj, R.</creatorcontrib><creatorcontrib>Zhu, Zhiguang</creatorcontrib><creatorcontrib>Narayan, R.L.</creatorcontrib><creatorcontrib>Ramamurty, U.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Punit</au><au>Jayaraj, R.</au><au>Zhu, Zhiguang</au><au>Narayan, R.L.</au><au>Ramamurty, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of metastable austenite in the fatigue resistance of 304L stainless steel produced by laser-based powder bed fusion</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2022-03-14</date><risdate>2022</risdate><volume>837</volume><spage>142744</spage><pages>142744-</pages><artnum>142744</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The fatigue crack growth (FCG) behavior and fatigue strength of 304L stainless steel (SS) manufactured by the laser powder bed fusion (LB-PBF) process were investigated. Effect of build orientation, microstructure, and temperature--considering that the alloy undergoes temperature-dependent stress-induced martensitic transformation (SIMT)--were determined. FCG rates were found to be broadly independent of the build orientation and microstructure, although it is reduced in shorter builds due to the presence of higher compressive residual stress in them. Microstructural investigations of the fatigue crack reveal that SIMT occurs at the crack tip of alloys tested at room temperature, whereas the same was negligible at 150 °C. SIMT induces dilatation and shear, which enhances crack closure and retards FCG rates at RT compared to that at 150 °C. Using the microstructural observations of the transformed zone, an estimate of the crack closure due to SIMT is provided. Finally, failure envelopes or the Kitagawa-Takahashi diagram was prepared for different temperatures to facilitate a damage tolerant design approach. [Display omitted]</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2022.142744</doi><orcidid>https://orcid.org/0000-0003-2938-731X</orcidid><orcidid>https://orcid.org/0000-0003-3233-8279</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-03, Vol.837, p.142744, Article 142744
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2677658102
source ScienceDirect Journals (5 years ago - present)
subjects Austenitic stainless steels
Compressive properties
Crack closure
Crack propagation
Crack tips
Damage tolerance
Fatigue
Fatigue failure
Fatigue strength
Fracture mechanics
Laser applications
Martensitic transformations
Metal fatigue
Microstructure
Orientation effects
Powder bed fusion
Powder beds
Residual stress
Room temperature
Stainless steel
Stress-induced martensitic transformation
Temperature
Temperature dependence
title Role of metastable austenite in the fatigue resistance of 304L stainless steel produced by laser-based powder bed fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20metastable%20austenite%20in%20the%20fatigue%20resistance%20of%20304L%20stainless%20steel%20produced%20by%20laser-based%20powder%20bed%20fusion&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Kumar,%20Punit&rft.date=2022-03-14&rft.volume=837&rft.spage=142744&rft.pages=142744-&rft.artnum=142744&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2022.142744&rft_dat=%3Cproquest_cross%3E2677658102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677658102&rft_id=info:pmid/&rft_els_id=S0921509322001526&rfr_iscdi=true